IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p286-296.html
   My bibliography  Save this article

A multiobjective beam angle optimization framework for intensity-modulated radiation therapy

Author

Listed:
  • de Freitas, Juliana Campos
  • Cantane, Daniela Renata
  • Rocha, Humberto
  • Dias, Joana

Abstract

Radiation therapy treatment planning is inherently a multiobjective problem, aiming to obtain the best tradeoffs between irradiating the tumor with the prescribed dose and sparing as much as possible the surrounding healthy organs. Many different multiobjective approaches have been proposed for the optimization of radiation intensities for fixed beam irradiation directions. However, multiobjective beam angle optimization is seldom considered. The purpose of this paper is to introduce a new multiobjective optimization framework that explicitly and simultaneously considers the optimization of intensities and also beam directions. Whilst multiobjective optimization of radiation intensities considering a fixed set of beam directions gives rise to a single Pareto front, beam angle optimization gives rise to the appearance of multiple Pareto fronts, each one associated with a given beam angle set. Our framework proposes a beam angle set choice based on the evaluation of non-dominated solutions belonging to different Pareto fronts, using a tree-based approach and a performance indicator to assess the quality of each Pareto front. The proposed approach, illustrated by head-and-neck cancer cases, allows for more flexibility in the calculation of solutions and a better understanding of the existing compromises between different objectives.

Suggested Citation

  • de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:286-296
    DOI: 10.1016/j.ejor.2024.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    2. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    5. Raith, Andrea & Ehrgott, Matthias & Fauzi, Fariza & Lin, Kuan-Min & Macann, Andrew & Rouse, Paul & Simpson, John, 2022. "Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients," European Journal of Operational Research, Elsevier, vol. 296(1), pages 289-303.
    6. Lim, Gino J. & Kardar, Laleh & Ebrahimi, Saba & Cao, Wenhua, 2020. "A risk-based modeling approach for radiation therapy treatment planning under tumor shrinkage uncertainty," European Journal of Operational Research, Elsevier, vol. 280(1), pages 266-278.
    7. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    8. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    9. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    10. Zaghian, Maryam & Lim, Gino J. & Khabazian, Azin, 2018. "A chance-constrained programming framework to handle uncertainties in radiation therapy treatment planning," European Journal of Operational Research, Elsevier, vol. 266(2), pages 736-745.
    11. Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
    12. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    13. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    14. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    15. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    16. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    2. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    3. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    4. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    5. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    6. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    7. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    8. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    9. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    10. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    11. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    12. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    13. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. Zandieh, Fatemeh & Ghannadpour, Seyed Farid, 2023. "A comprehensive risk assessment view on interval type-2 fuzzy controller for a time-dependent HazMat routing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 685-707.
    15. Shao, Lizhen & Ehrgott, Matthias, 2016. "Discrete representation of non-dominated sets in multi-objective linear programming," European Journal of Operational Research, Elsevier, vol. 255(3), pages 687-698.
    16. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    17. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    18. Dalila B. M. M. Fontes & S. Mahdi Homayouni, 2023. "A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 241-268, March.
    19. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    20. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:286-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.