Efficient computation of expected hypervolume improvement using box decomposition algorithms
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-019-00798-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
- Michael Emmerich & Kaifeng Yang & André Deutz & Hao Wang & Carlos M. Fonseca, 2016. "A Multicriteria Generalization of Bayesian Global Optimization," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 229-242, Springer.
- Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fuhao Ji & Auralee Edelen & Ryan Roussel & Xiaozhe Shen & Sara Miskovich & Stephen Weathersby & Duan Luo & Mianzhen Mo & Patrick Kramer & Christopher Mayes & Mohamed A. K. Othman & Emilio Nanni & Xiji, 2024. "Multi-objective Bayesian active learning for MeV-ultrafast electron diffraction," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Eichfelder, Gabriele & Warnow, Leo, 2023. "Advancements in the computation of enclosures for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 310(1), pages 315-327.
- Jixiang Qing & Ivo Couckuyt & Tom Dhaene, 2023. "A robust multi-objective Bayesian optimization framework considering input uncertainty," Journal of Global Optimization, Springer, vol. 86(3), pages 693-711, July.
- Nicolai Palm & Markus Landerer & Herbert Palm, 2022. "Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
- Li Mei & Zhan Dawei, 2025. "Pointwise expected hypervolume improvement for expensive multi-objective optimization," Journal of Global Optimization, Springer, vol. 91(1), pages 171-197, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
- Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
- Jixiang Qing & Ivo Couckuyt & Tom Dhaene, 2023. "A robust multi-objective Bayesian optimization framework considering input uncertainty," Journal of Global Optimization, Springer, vol. 86(3), pages 693-711, July.
- Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
- Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
- Pang, Yong & Hu, Zhengguo & Zhang, Shuai & Guo, Guanchen & Song, Xueguan & Kan, Ziyun, 2024. "Co-design of an unmanned cable shovel for structural and control integrated optimization: A highly heterogeneous constrained multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 376(PB).
- Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
- Mehdad, E. & Kleijnen, Jack P.C., 2014.
"Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging,"
Other publications TiSEM
8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2014-063, Tilburg University, Center for Economic Research.
- Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
- Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
- Prashant Singh & Ivo Couckuyt & Khairy Elsayed & Dirk Deschrijver & Tom Dhaene, 2017. "Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 172-193, October.
- Burdett, Robert L & Corry, Paul & Yarlagadda, Prasad & Cook, David & Birgan, Sean, 2024. "Multicriteria optimization techniques for understanding the case mix landscape of a hospital," European Journal of Operational Research, Elsevier, vol. 319(1), pages 263-291.
- Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
- Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
- Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
- Bhupinder Singh Saini & Michael Emmerich & Atanu Mazumdar & Bekir Afsar & Babooshka Shavazipour & Kaisa Miettinen, 2022. "Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluations," Journal of Global Optimization, Springer, vol. 83(4), pages 865-889, August.
- Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
- De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020.
"Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming,"
European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
- Marianna De Santis & Giorgio Grani & Laura Palagi, 2019. "Branching with Hyperplanes in the Criterion Space:the Frontier Partitioner Algorithm for Biobjective Integer Programming," DIAG Technical Reports 2019-03, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
More about this item
Keywords
Expected hypervolume improvement; Probability of improvement; Time complexity; Multi-objective Bayesian global optimization; Hypervolume indicator; Kriging;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:1:d:10.1007_s10898-019-00798-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.