IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v77y2020i3d10.1007_s10589-020-00233-8.html
   My bibliography  Save this article

On the use of polynomial models in multiobjective directional direct search

Author

Listed:
  • C. P. Brás

    (FCT-UNL-CMA)

  • A. L. Custódio

    (FCT-UNL-CMA)

Abstract

Polynomial interpolation or regression models are an important tool in Derivative-free Optimization, acting as surrogates of the real function. In this work, we propose the use of these models in the multiobjective framework of directional direct search, namely the one of Direct Multisearch. Previously evaluated points are used to build quadratic polynomial models, which are minimized in an attempt of generating nondominated points of the true function, defining a search step for the algorithm. Numerical results state the competitiveness of the proposed approach.

Suggested Citation

  • C. P. Brás & A. L. Custódio, 2020. "On the use of polynomial models in multiobjective directional direct search," Computational Optimization and Applications, Springer, vol. 77(3), pages 897-918, December.
  • Handle: RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00233-8
    DOI: 10.1007/s10589-020-00233-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00233-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    2. Paul Feliot & Julien Bect & Emmanuel Vazquez, 2017. "A Bayesian approach to constrained single- and multi-objective optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 97-133, January.
    3. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2015. "Portfolio Management With Higher Moments: The Cardinality Impact," GEMF Working Papers 2015-15, GEMF, Faculty of Economics, University of Coimbra.
    4. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    5. A. L. Custódio & J. F. A. Madeira, 2018. "MultiGLODS: global and local multiobjective optimization using direct search," Journal of Global Optimization, Springer, vol. 72(2), pages 323-345, October.
    6. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    7. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    8. Margaret M. Wiecek & Matthias Ehrgott & Alexander Engau, 2016. "Continuous Multiobjective Programming," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 739-815, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    2. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    3. Wenyu Wang & Taimoor Akhtar & Christine A. Shoemaker, 2022. "Integrating $$\varepsilon $$ ε -dominance and RBF surrogate optimization for solving computationally expensive many-objective optimization problems," Journal of Global Optimization, Springer, vol. 82(4), pages 965-992, April.
    4. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    5. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    6. Kalyan Shankar Bhattacharjee & Hemant Kumar Singh & Tapabrata Ray, 2017. "An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making," Journal of Global Optimization, Springer, vol. 68(1), pages 71-93, May.
    7. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    8. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    9. Rodriguez-Roman, Daniel & Ritchie, Stephen G., 2020. "Surrogate-based optimization for multi-objective toll design problems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 485-503.
    10. Cheng, Hongzhi & Li, Ziliang & Duan, Penghao & Lu, Xingen & Zhao, Shengfeng & Zhang, Yanfeng, 2023. "Robust optimization and uncertainty quantification of a micro axial compressor for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 352(C).
    11. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    12. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    13. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    14. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    15. Mariacrocetta Sambito & Stefania Piazza & Gabriele Freni, 2021. "Stochastic Approach for Optimal Positioning of Pumps As Turbines (PATs)," Sustainability, MDPI, vol. 13(21), pages 1-12, November.
    16. He, Fang & Yin, Yafeng & Chen, Zhibin & Zhou, Jing, 2015. "Pricing of parking games with atomic players," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 1-12.
    17. Luciano Ferreira Cruz & Flavia Bernardo Pinto & Lucas Camilotti & Angelo Marcio Oliveira Santanna & Roberto Zanetti Freire & Leandro Santos Coelho, 2022. "Improved multiobjective differential evolution with spherical pruning algorithm for optimizing 3D printing technology parametrization process," Annals of Operations Research, Springer, vol. 319(2), pages 1565-1587, December.
    18. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    19. Y. Diouane & S. Gratton & L. Vicente, 2015. "Globally convergent evolution strategies for constrained optimization," Computational Optimization and Applications, Springer, vol. 62(2), pages 323-346, November.
    20. Charles Audet & Michael Kokkolaras & Sébastien Le Digabel & Bastien Talgorn, 2018. "Order-based error for managing ensembles of surrogates in mesh adaptive direct search," Journal of Global Optimization, Springer, vol. 70(3), pages 645-675, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00233-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.