IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p465-d1036722.html
   My bibliography  Save this article

What Is the Best Way to Optimally Parameterize the MPC Cost Function for Vehicle Guidance?

Author

Listed:
  • David Stenger

    (Institute of Automatic Control (IRT), RWTH Aachen University, D-52074 Aachen, Germany)

  • Robert Ritschel

    (Department Automated Driving Functions, IAV GmbH, D-09120 Chemnitz, Germany)

  • Felix Krabbes

    (Faculty of Automotive Engineering, Zwickau University of Applied Sciences, D-08056 Zwickau, Germany)

  • Rick Voßwinkel

    (Faculty of Automotive Engineering, Zwickau University of Applied Sciences, D-08056 Zwickau, Germany)

  • Hendrik Richter

    (Faculty of Engineering, HTWK Leipzig University of Applied Sciences, D-04277 Leipzig, Germany)

Abstract

Model predictive control (MPC) is a promising approach to the lateral and longitudinal control of autonomous vehicles. However, the parameterization of the MPC with respect to high-level requirements such as passenger comfort, as well as lateral and longitudinal tracking, is challenging. Numerous tuning parameters and conflicting requirements need to be considered. In this paper, we formulate the MPC tuning task as a multi-objective optimization problem. Its solution is demanding for two reasons: First, MPC-parameterizations are evaluated in a computationally expensive simulation environment. As a result, the optimization algorithm needs to be as sample-efficient as possible. Second, for some poor parameterizations, the simulation cannot be completed; therefore, useful objective function values are not available (for instance, learning with crash constraints). In this work, we compare the sample efficiency of multi-objective particle swarm optimization (MOPSO), a genetic algorithm (NSGA-II), and multiple versions of Bayesian optimization (BO). We extend BO by introducing an adaptive batch size to limit the computational overhead. In addition, we devise a method to deal with crash constraints. The results show that BO works best for a small budget, NSGA-II is best for medium budgets, and none of the evaluated optimizers are superior to random search for large budgets. Both proposed BO extensions are, therefore, shown to be beneficial.

Suggested Citation

  • David Stenger & Robert Ritschel & Felix Krabbes & Rick Voßwinkel & Hendrik Richter, 2023. "What Is the Best Way to Optimally Parameterize the MPC Cost Function for Vehicle Guidance?," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:465-:d:1036722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 439-440, June.
    2. Chang Wang & Xia Zhao & Rui Fu & Zhen Li, 2020. "Research on the Comfort of Vehicle Passengers Considering the Vehicle Motion State and Passenger Physiological Characteristics: Improving the Passenger Comfort of Autonomous Vehicles," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    3. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
    2. Baklouti, Ahmad & Dammak, Khalil & El Hami, Abdelkhalak, 2022. "Optimum reliable design of rolling element bearings using multi-objective optimization based on C-NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Menghua Deng & Zhiqi Li & Feifei Tao, 2022. "Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    4. Jamie A. Manson & Thomas W. Chamberlain & Richard A. Bourne, 2021. "MVMOO: Mixed variable multi-objective optimisation," Journal of Global Optimization, Springer, vol. 80(4), pages 865-886, August.
    5. Menghua Deng & Junfei Chen & Feifei Tao & Jiulong Zhu & Min Wang, 2022. "On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(1), pages 1-20, January.
    6. Thebelt, Alexander & Tsay, Calvin & Lee, Robert M. & Sudermann-Merx, Nathan & Walz, David & Tranter, Tom & Misener, Ruth, 2022. "Multi-objective constrained optimization for energy applications via tree ensembles," Applied Energy, Elsevier, vol. 306(PB).
    7. He Liu & Xueming Li, 2022. "Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China," Land, MDPI, vol. 11(5), pages 1-20, April.
    8. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    9. Seyed Mohsen Hosseinian & Hamid Mirzahossein & Robert Guzik, 2024. "Sustainable Integration of Autonomous Vehicles into Road Networks: Ecological and Passenger Comfort Considerations," Sustainability, MDPI, vol. 16(14), pages 1-34, July.
    10. Jiaru Bai & Sebastian Mosbach & Connor J. Taylor & Dogancan Karan & Kok Foong Lee & Simon D. Rihm & Jethro Akroyd & Alexei A. Lapkin & Markus Kraft, 2024. "A dynamic knowledge graph approach to distributed self-driving laboratories," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:465-:d:1036722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.