IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4554-d1165270.html
   My bibliography  Save this article

A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem

Author

Listed:
  • Abdulaziz Almalaq

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

  • Tawfik Guesmi

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

  • Saleh Albadran

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 2240, Saudi Arabia)

Abstract

The economic emission dispatch problem (EEDP) is a nonconvex and nonsmooth multiobjective optimization problem in the power system field. Generally, fuel cost and total emissions of harmful gases are the problem objective functions. The EEDP decision variables are output powers of thermal generating units (TGUs). To make the EEDP problem more practical, valve point loading effects (VPLEs), prohibited operation zones (POZs), and power balance constraints should be included in the problem constraints. In order to solve this complex and constrained EEDP, a new multiobjective optimization technique combining the differential evolution (DE) algorithm and chaos theory is proposed in this study. In this new multiobjective optimization technique, a nondomination sorting principle and a crowding distance calculation are employed to extract an accurate Pareto front. To avoid being trapped in local optima and enhance the conventional DE algorithm, two different chaotic maps are used in its initialization, crossover, and mutation phases instead of random numbers. To overcome difficulties caused by the equality constraint describing the power balance constraint, a slack TGU is defined to compensate for the gap between the total generation and the sum of the system load and total power losses. Then, the optimal power outputs of all thermal units except the slack unit are determined by the suggested optimization technique. To assess the effectiveness and applicability of the proposed method for solving the EEDP, the six-unit and ten-unit systems are used. Moreover, obtained results are compared with other new optimization techniques already developed and tested for the same purpose. The superior performance of the ChMODE is also evaluated by using various metrics such as inverted generational distance (IGD), hyper-volume (HV), spacing metric (SM), and the average satisfactory degree (ASD).

Suggested Citation

  • Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4554-:d:1165270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    2. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    3. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    4. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    5. Mohammed A. El-Shorbagy & Islam M. Eldesoky & Mohamady M. Basyouni & Islam Nassar & Adel M. El-Refaey, 2022. "Chaotic Search-Based Salp Swarm Algorithm for Dealing with System of Nonlinear Equations and Power System Applications," Mathematics, MDPI, vol. 10(9), pages 1-30, April.
    6. Xinlin Xu & Zhongbo Hu & Qinghua Su & Zenggang Xiong, 2018. "Multiobjective Collective Decision Optimization Algorithm for Economic Emission Dispatch Problem," Complexity, Hindawi, vol. 2018, pages 1-20, November.
    7. Yuanyuan Wang & Zexu Yu & Zhenhai Dou & Mengmeng Qiao & Ye Zhao & Ruishuo Xie & Lianxin Liu, 2022. "Decentralized Coordination Dispatch Model Based on Chaotic Mutation Harris Hawks Optimization Algorithm," Energies, MDPI, vol. 15(10), pages 1-26, May.
    8. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    9. Ali S. Alghamdi, 2022. "A New Self-Adaptive Teaching–Learning-Based Optimization with Different Distributions for Optimal Reactive Power Control in Power Networks," Energies, MDPI, vol. 15(8), pages 1-24, April.
    10. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    11. Gherbi, Yamina Ahlem & Bouzeboudja, Hamid & Gherbi, Fatima Zohra, 2016. "The combined economic environmental dispatch using new hybrid metaheuristic," Energy, Elsevier, vol. 115(P1), pages 468-477.
    12. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    13. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sile Hu & Yuan Gao & Yuan Wang & Yuan Yu & Yue Bi & Linfeng Cao & Muhammad Farhan Khan & Jiaqiang Yang, 2024. "Optimal Configuration of Wind–Solar–Thermal-Storage Power Energy Based on Dynamic Inertia Weight Chaotic Particle Swarm," Energies, MDPI, vol. 17(5), pages 1-14, February.
    2. Xinhua Gao & Song Liu & Shan Jiang & Dennis Yu & Yong Peng & Xianting Ma & Wenting Lin, 2024. "Optimizing the Three-Dimensional Multi-Objective of Feeder Bus Routes Considering the Timetable," Mathematics, MDPI, vol. 12(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    2. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    3. Lin, Jian & Wang, Zhou-Jing, 2019. "Multi-area economic dispatch using an improved stochastic fractal search algorithm," Energy, Elsevier, vol. 166(C), pages 47-58.
    4. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.
    5. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    6. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    7. Chun-Yao Lee & Maickel Tuegeh, 2020. "An Optimal Solution for Smooth and Non-Smooth Cost Functions-Based Economic Dispatch Problem," Energies, MDPI, vol. 13(14), pages 1-16, July.
    8. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    9. Jebaraj, Luke & Venkatesan, Chakkaravarthy & Soubache, Irisappane & Rajan, Charles Christober Asir, 2017. "Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1206-1220.
    10. Nikola Ivković & Robert Kudelić & Matej Črepinšek, 2022. "Probability and Certainty in the Performance of Evolutionary and Swarm Optimization Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-25, November.
    11. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    12. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    13. Zandieh, Fatemeh & Ghannadpour, Seyed Farid, 2023. "A comprehensive risk assessment view on interval type-2 fuzzy controller for a time-dependent HazMat routing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 685-707.
    14. Dalila B. M. M. Fontes & S. Mahdi Homayouni, 2023. "A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 241-268, March.
    15. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    16. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    17. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    18. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    19. Ducardo L. Molina & Juan Ricardo Vidal Medina & Alexis Sagastume Gutiérrez & Juan J. Cabello Eras & Jesús A. Lopez & Simón Hincapie & Enrique C. Quispe, 2023. "Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    20. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4554-:d:1165270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.