IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v64y2016i2d10.1007_s10589-015-9815-8.html
   My bibliography  Save this article

Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results

Author

Listed:
  • Günter Rudolph

    (TU Dortmund University)

  • Oliver Schütze

    (CINVESTAV IPN)

  • Christian Grimme

    (University of Münster)

  • Christian Domínguez-Medina

    (National Polytechnic Institute)

  • Heike Trautmann

    (University of Münster)

Abstract

One main task in evolutionary multiobjective optimization (EMO) is to obtain a suitable finite size approximation of the Pareto front which is the image of the solution set, termed the Pareto set, of a given multiobjective optimization problem. In the technical literature, the characteristic of the desired approximation is commonly expressed by closeness to the Pareto front and a sufficient spread of the solutions obtained. In this paper, we first make an effort to show by theoretical and empirical findings that the recently proposed Averaged Hausdorff (or $$\Delta _p$$ Δ p -) indicator indeed aims at fulfilling both performance criteria for bi-objective optimization problems. In the second part of this paper, standard EMO algorithms combined with a specialized archiver and a postprocessing step based on the $$\Delta _p$$ Δ p indicator are introduced which sufficiently approximate the $$\Delta _p$$ Δ p -optimal archives and generate solutions evenly spread along the Pareto front.

Suggested Citation

  • Günter Rudolph & Oliver Schütze & Christian Grimme & Christian Domínguez-Medina & Heike Trautmann, 2016. "Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results," Computational Optimization and Applications, Springer, vol. 64(2), pages 589-618, June.
  • Handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9815-8
    DOI: 10.1007/s10589-015-9815-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-015-9815-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-015-9815-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
    2. Guerreiro, Andreia P. & Fonseca, Carlos M., 2020. "An analysis of the Hypervolume Sharpe-Ratio Indicator," European Journal of Operational Research, Elsevier, vol. 283(2), pages 614-629.
    3. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    4. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    5. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    6. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    7. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    8. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    9. Hyoungjin Kim & Meng-Sing Liou, 2013. "New fitness sharing approach for multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 55(3), pages 579-595, March.
    10. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    11. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    12. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    13. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    14. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    15. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    16. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    17. Xiang Yu & Xueqing Zhang, 2017. "Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    18. Peng Cheng & Chun-Wei Lin & Jeng-Shyang Pan, 2015. "Use HypE to Hide Association Rules by Adding Items," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    19. Zhenqiang Zhang & Sile Ma & Xiangyuan Jiang, 2022. "Research on Multi-Objective Multi-Robot Task Allocation by Lin–Kernighan–Helsgaun Guided Evolutionary Algorithms," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    20. Ouyang, Haibin & Chen, Jianhong & Li, Steven & Xiang, Jianhua & Zhan, Zhi-Hui, 2023. "Altruistic population algorithm: A metaheuristic search algorithm for solving multimodal multi-objective optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 296-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9815-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.