IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i3p1036-1051.html
   My bibliography  Save this article

A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract

Author

Listed:
  • Huang, Zhouchun
  • Zheng, Qipeng Phil

Abstract

A preventive maintenance scheduling problem is studied on behalf of generation companies (GENCOs) with natural gas power plants, while taking into account their signed natural gas contracts and the opportunities of purchasing and selling natural gas in the spot market. This paper considers the uncertain prices of both natural gas and electricity in the spot market, and proposes a multistage stochastic mixed integer programming (MSMIP) model seeking the optimal operations regarding maintenance outage scheduling and natural gas trading. Large-scale MSMIP problems suffer not only the curse of dimensionality, but also computational difficulties with both discrete and continuous variables at each stage. To this respect, this paper leverages the progressive hedging algorithm based on scenario-based decomposition to solve large MSMIP problems. The solutions obtained from the algorithm exhibit promising quality under our numerical studies. Due to the independence among all the subproblems after the decomposition, the algorithm is amenable to parallel computing, which leads to faster convergence as demonstrated in the numerical results. Computational experiments also show that it is beneficial to use MSMIP while considering both maintenance planning and natural gas contracting. In addition, the results also indicate the GENCOs with a larger number of small generators perform better than those with a smaller number of big generators.

Suggested Citation

  • Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:3:p:1036-1051
    DOI: 10.1016/j.ejor.2020.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    4. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2014. "Bounds in Multistage Linear Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 200-229, October.
    5. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    6. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    7. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    8. Gregory Steeger & Timo Lohmann & Steffen Rebennack, 2018. "Strategic bidding for a price-maker hydroelectric producer: Stochastic dual dynamic programming and Lagrangian relaxation," IISE Transactions, Taylor & Francis Journals, vol. 50(11), pages 929-942, November.
    9. Lapa, Celso Marcelo F. & Pereira, Cláudio Márcio N.A. & de Barros, Márcio Paes, 2006. "A model for preventive maintenance planning by genetic algorithms based in cost and reliability," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 233-240.
    10. Luis Contesse & Juan Ferrer & Sergio Maturana, 2005. "A Mixed-Integer Programming Model for Gas Purchase and Transportation," Annals of Operations Research, Springer, vol. 139(1), pages 39-63, October.
    11. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    12. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    13. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    14. Jirutitijaroen, Panida & Kim, Sujin & Kittithreerapronchai, Oran & Prina, José, 2013. "An optimization model for natural gas supply portfolios of a power generation company," Applied Energy, Elsevier, vol. 107(C), pages 1-9.
    15. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    16. Canto, Salvador Perez, 2008. "Application of Benders' decomposition to power plant preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 184(2), pages 759-777, January.
    17. Mazidi, Peyman & Tohidi, Yaser & Ramos, Andres & Sanz-Bobi, Miguel A., 2018. "Profit-maximization generation maintenance scheduling through bi-level programming," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1045-1057.
    18. Pflug, Georg C. & Broussev, Nikola, 2009. "Electricity swing options: Behavioral models and pricing," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1041-1050, September.
    19. Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
    20. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    21. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    22. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    23. Yiduo Zhan & Qipeng P. Zheng, 2018. "A multistage decision-dependent stochastic bilevel programming approach for power generation investment expansion planning," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 720-734, August.
    24. Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravago, Majah-Leah V. & Jandoc, Karl Robert & Pormon, Miah Maye, 2023. "Reliability and forced outages: Survival analysis with recurrent events," Japan and the World Economy, Elsevier, vol. 68(C).
    2. Gongli Luo & Xiaoqing Liu & Felix T. S. Chan, 2023. "Optimal Ordering Decisions in Portfolio Procurement Considering Spot Price Fluctuation," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    3. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    4. Simon Thevenin & Yossiri Adulyasak & Jean‐François Cordeau, 2021. "Material Requirements Planning Under Demand Uncertainty Using Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 475-493, February.
    5. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2024. "Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 179-199.
    6. Tae-Woo Kim & Yenjae Chang & Dae-Wook Kim & Man-Keun Kim, 2020. "Preventive Maintenance and Forced Outages in Power Plants in Korea," Energies, MDPI, vol. 13(14), pages 1-12, July.
    7. Xiaoqing Liu & Gongli Luo & Xinsheng Xu, 2022. "Optimal Purchasing Decisions with Supplier Default in Portfolio Procurement," Mathematics, MDPI, vol. 10(17), pages 1-10, September.
    8. Kumar, Sourabh & Barua, Mukesh Kumar, 2022. "A modeling framework and analysis of challenges faced by the Indian petroleum supply chain," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    2. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    3. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    4. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    5. Zhen, Lu & He, Xueting & Zhuge, Dan & Wang, Shuaian, 2024. "Primal decomposition for berth planning under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    6. Kazemi Zanjani, Masoumeh & Sanei Bajgiran, Omid & Nourelfath, Mustapha, 2016. "A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 466-476.
    7. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    8. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    9. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    10. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    11. Wang, Julong & Liu, Zhixue & Li, Feng, 2024. "Integrated production and transportation scheduling problem under nonlinear cost structures," European Journal of Operational Research, Elsevier, vol. 313(3), pages 883-904.
    12. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    13. Gregorio Rius-Sorolla & Julien Maheut & Sofia Estelles-Miguel & Jose P. Garcia-Sabater, 2021. "Collaborative Distributed Planning with Asymmetric Information. A Technological Driver for Sustainable Development," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    14. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    15. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
    16. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    17. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    18. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    19. N. Edirisinghe & E. Patterson, 2007. "Multi-period stochastic portfolio optimization: Block-separable decomposition," Annals of Operations Research, Springer, vol. 152(1), pages 367-394, July.
    20. Eyyüb Y. Kıbış & İ. Esra Büyüktahtakın & Robert G. Haight & Najmaddin Akhundov & Kathleen Knight & Charles E. Flower, 2021. "A Multistage Stochastic Programming Approach to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 808-834, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:3:p:1036-1051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.