IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p179-199.html
   My bibliography  Save this article

Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty

Author

Listed:
  • Zhong, Zhiming
  • Fan, Neng
  • Wu, Lei

Abstract

The uncertainties resulting from the escalating penetration of renewable energy resources pose severe challenges to the efficient operation of modern power systems. Hydroelectricity is characterized by its flexibility, controllability, and reliability, and thus becomes one of the most ideal energy resources to hedge against such uncertainties. This paper studies the mid-term integrated generation and maintenance scheduling of a cascaded hydroelectric system (CHS) consisting of multiple cascaded reservoirs and hydroelectric units. To precisely describe the mid-term water regulation policies, the hydraulic coupling relationship and water-energy nexus of CHS are incorporated into the proposed optimization model. The uncertainties of natural water inflow and the power outputs of wind/solar energy generation are taken into consideration and captured via a stochastic process modeled by a scenario tree. A multistage stochastic optimization (MSO) approach is developed to coordinate the complementary operations of multiple energy resources, by optimizing the mid-term water resource management, generation scheduling, and maintenance scheduling of CHS. The proposed MSO model is formulated as a large-scale mixed-integer linear program that presents significant computational intractability. To address this issue, a tailored Benders decomposition algorithm is developed. Two real-world case studies are conducted to demonstrate the capability and characteristics of the proposed model and algorithm. The computational results show that the proposed MSO model can exploit the flexibility of hydroelectricity to efficiently respond to variable wind and solar power, and reserve water resources for the generation in peak months to reduce the consumption of fossil fuel. The proposed solution approach also exhibits promising computational efficiency when handling large-scale models.

Suggested Citation

  • Zhong, Zhiming & Fan, Neng & Wu, Lei, 2024. "Multistage Stochastic optimization for mid-term integrated generation and maintenance scheduling of cascaded hydroelectric system with renewable energy uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 179-199.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:179-199
    DOI: 10.1016/j.ejor.2024.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marí, L. & Nabona, N. & Pagès-Bernaus, A., 2017. "Medium-term power planning in electricity markets with pool and bilateral contracts," European Journal of Operational Research, Elsevier, vol. 260(2), pages 432-443.
    2. Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2018. "Probabilistic evaluation of the long-term power system resource adequacy: The Greek case," Energy Policy, Elsevier, vol. 117(C), pages 295-306.
    3. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    4. Mehdi Golari & Neng Fan & Tongdan Jin, 2017. "Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy," Production and Operations Management, Production and Operations Management Society, vol. 26(3), pages 409-425, March.
    5. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    7. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    8. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    9. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    10. Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    11. Gargari, Milad Zamani & Hagh, Mehrdad Tarafdar & Zadeh, Saeid Ghassem, 2021. "Preventive maintenance scheduling of multi energy microgrid to enhance the resiliency of system," Energy, Elsevier, vol. 221(C).
    12. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    13. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    14. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    15. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Liu, Pan & Chen, Alexander B., 2018. "Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs," Energy, Elsevier, vol. 143(C), pages 785-796.
    16. Diagoupis, Theodoros D. & Andrianesis, Panagiotis E. & Dialynas, Evangelos N., 2016. "A planning approach for reducing the impact of natural gas network on electricity markets," Applied Energy, Elsevier, vol. 175(C), pages 189-198.
    17. Massrur, Hamid Reza & Niknam, Taher & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: A comparative study," Energy, Elsevier, vol. 155(C), pages 552-564.
    18. Oscar Dowson & Lea Kapelevich, 2021. "SDDP.jl : A Julia Package for Stochastic Dual Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 27-33, January.
    19. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    20. Hoseini, Naghi & Sheikholeslami, Abdolreza & Barforoushi, Taghi & Latify, Mohammad Amin, 2020. "Preventive maintenance mid-term scheduling of resources in multi-carrier energy systems," Energy, Elsevier, vol. 197(C).
    21. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    22. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Georgiadis, Michael C. & Papaioannou, George & Dikaiakos, Christos, 2016. "A mid-term, market-based power systems planning model," Applied Energy, Elsevier, vol. 179(C), pages 17-35.
    23. Cerisola, Santiago & Latorre, Jesus M. & Ramos, Andres, 2012. "Stochastic dual dynamic programming applied to nonconvex hydrothermal models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 687-697.
    24. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
    25. Pages, Adela & Nabona, Narcis, 2007. "A heuristic for the long-term electricity generation planning problem using the Bloom and Gallant formulation," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1245-1264, September.
    26. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    27. van Ackooij, Wim & D’Ambrosio, Claudia & Thomopulos, Dimitri & Trindade, Renan Spencer, 2021. "Decomposition and shortest path problem formulation for solving the hydro unit commitment and scheduling in a hydro valley," European Journal of Operational Research, Elsevier, vol. 291(3), pages 935-943.
    28. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    2. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    3. Michel Vasquez & Mirsad Buljubasic & Saïd Hanafi, 2023. "An efficient scenario penalization matheuristic for a stochastic scheduling problem," Journal of Heuristics, Springer, vol. 29(2), pages 383-408, June.
    4. Hohmann, Marc & Warrington, Joseph & Lygeros, John, 2020. "A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 16-32.
    5. Nathan Sudermann‐Merx & Steffen Rebennack & Christian Timpe, 2021. "Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3429-3447, October.
    6. Simon Thevenin & Yossiri Adulyasak & Jean‐François Cordeau, 2021. "Material Requirements Planning Under Demand Uncertainty Using Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 475-493, February.
    7. Yang, Xiao & Li, Yuanzheng & Zhao, Yong & Yu, Yaowen & Lian, Yicheng & Hao, Guokai & Jiang, Lin, 2023. "Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation," Energy, Elsevier, vol. 278(C).
    8. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    9. Jann Michael Weinand & Kenneth Sorensen & Pablo San Segundo & Max Kleinebrahm & Russell McKenna, 2020. "Research trends in combinatorial optimisation," Papers 2012.01294, arXiv.org.
    10. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    11. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
    12. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    13. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    14. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    15. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    16. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    17. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    18. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    19. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    20. Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:179-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.