IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i1p277-289.html
   My bibliography  Save this article

A mean-risk mixed integer nonlinear program for transportation network protection

Author

Listed:
  • Lu, Jie
  • Gupte, Akshay
  • Huang, Yongxi

Abstract

This paper focuses on transportation network protection to hedge against extreme events such as earthquakes. Traditional two-stage stochastic programming has been widely adopted to obtain solutions under a risk-neutral preference through the use of expectations in the recourse function. In reality, decision makers hold different risk preferences. We develop a mean-risk two-stage stochastic programming model that allows for greater flexibility in handling risk preferences when allocating limited resources. In particular, the first stage minimizes the retrofitting cost by making strategic retrofit decisions whereas the second stage minimizes the travel cost. The conditional value-at-risk (CVaR) is included as the risk measure for the total system cost. The two-stage model is equivalent to a nonconvex mixed integer nonlinear program (MINLP). To solve this model using the Generalized Benders Decomposition (GBD) method, we derive a convex reformulation of the second-stage problem to overcome algorithmic challenges embedded in the non-convexity, nonlinearity, and non-separability of first- and second-stage variables. The model is used for developing retrofit strategies for networked highway bridges, which is one of the research areas that can significantly benefit from mean-risk models. We first justify the model using a hypothetical nine-node network. Then we evaluate our decomposition algorithm by applying the model to the Sioux Falls network, which is a large-scale benchmark network in the transportation research community. The effects of the chosen risk measure and critical parameters on optimal solutions are empirically explored.

Suggested Citation

  • Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:277-289
    DOI: 10.1016/j.ejor.2017.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    2. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    3. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    4. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Nagurney, Anna, 2006. "On the relationship between supply chain and transportation network equilibria: A supernetwork equivalence with computations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(4), pages 293-316, July.
    7. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    8. Yin, Yafeng & Madanat, Samer M. & Lu, Xiao-Yun, 2009. "Robust improvement schemes for road networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 198(2), pages 470-479, October.
    9. Yau, Sheena & Kwon, Roy H. & Scott Rogers, J. & Wu, Desheng, 2011. "Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion," International Journal of Production Economics, Elsevier, vol. 134(1), pages 67-77, November.
    10. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    11. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    2. Chen, Zexing & Zhang, Yongjun & Tang, Wenhu & Lin, Xiaoming & Li, Qifeng, 2019. "Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response," Energy, Elsevier, vol. 176(C), pages 171-183.
    3. Andrzej Karbowski, 2021. "Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions," Energies, MDPI, vol. 14(20), pages 1-18, October.
    4. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    5. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    6. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Oliveira, Beatriz B. & Carravilla, Maria Antónia & Oliveira, José F. & Costa, Alysson M., 2019. "A co-evolutionary matheuristic for the car rental capacity-pricing stochastic problem," European Journal of Operational Research, Elsevier, vol. 276(2), pages 637-655.
    8. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Weimei Li & Leifu Gao, 2024. "Research on Risk-Averse Procurement Optimization of Emergency Supplies for Mine Thermodynamic Disasters," Mathematics, MDPI, vol. 12(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soleimani, Hamed & Govindan, Kannan, 2014. "Reverse logistics network design and planning utilizing conditional value at risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 487-497.
    2. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    3. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    4. Maciej Rysz & Mohammad Mirghorbani & Pavlo Krokhmal & Eduardo L. Pasiliao, 2014. "On risk-averse maximum weighted subgraph problems," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 167-185, July.
    5. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    6. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    7. Amy David & David Farr & Ross Januszyk & Urmila Diwekar, 2015. "USG Uses Stochastic Optimization to Lower Distribution Costs," Interfaces, INFORMS, vol. 45(3), pages 216-227, June.
    8. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    9. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    10. Tereza Sedlářová Nehézová & Michal Škoda & Robert Hlavatý & Helena Brožová, 2022. "Fuzzy and robust approach for decision-making in disaster situations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 617-645, June.
    11. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    12. Rahimian, Hamed & Bayraksan, Güzin & Homem-de-Mello, Tito, 2019. "Controlling risk and demand ambiguity in newsvendor models," European Journal of Operational Research, Elsevier, vol. 279(3), pages 854-868.
    13. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    14. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    15. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    16. Lynch & John Curtis, 2016. "The effects of wind generation capacity on electricity prices and generation costs: a Monte Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 133-151, January.
    17. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    18. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    19. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    20. Francisco Trespalacios & Ignacio E. Grossmann, 2015. "Algorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 59-74, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:277-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.