IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i1d10.1007_s10898-022-01128-0.html
   My bibliography  Save this article

The supporting hyperplane optimization toolkit for convex MINLP

Author

Listed:
  • Andreas Lundell

    (Åbo Akademi University)

  • Jan Kronqvist

    (KTH Royal Institute of Technology
    Imperial College London)

  • Tapio Westerlund

    (Åbo Akademi University)

Abstract

In this paper, an open-source solver for mixed-integer nonlinear programming (MINLP) problems is presented. The Supporting Hyperplane Optimization Toolkit (SHOT) combines a dual strategy based on polyhedral outer approximations (POA) with primal heuristics. The POA is achieved by expressing the nonlinear feasible set of the MINLP problem with linearizations obtained with the extended supporting hyperplane (ESH) and extended cutting plane (ECP) algorithms. The dual strategy can be tightly integrated with the mixed-integer programming (MIP) subsolver in a so-called single-tree manner, i.e., only a single MIP optimization problem is solved, where the polyhedral linearizations are added as lazy constraints through callbacks in the MIP solver. This enables the MIP solver to reuse the branching tree in each iteration, in contrast to most other POA-based methods. SHOT is available as a COIN-OR open-source project, and it utilizes a flexible task-based structure making it easy to extend and modify. It is currently available in GAMS, and can be utilized in AMPL, Pyomo and JuMP as well through its ASL interface. The main functionality and solution strategies implemented in SHOT are described in this paper, and their impact on the performance are illustrated through numerical benchmarks on 406 convex MINLP problems from the MINLPLib problem library. Many of the features introduced in SHOT can be utilized in other POA-based solvers as well. To show the overall effectiveness of SHOT, it is also compared to other state-of-the-art solvers on the same benchmark set.

Suggested Citation

  • Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:1:d:10.1007_s10898-022-01128-0
    DOI: 10.1007/s10898-022-01128-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01128-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01128-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Nowak & Norman Breitfeld & Eligius M. T. Hendrix & Grégoire Njacheun-Njanzoua, 2018. "Decomposition-based Inner- and Outer-Refinement Algorithms for Global Optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 305-321, October.
    2. Arne Stolbjerg Drud, 1994. "CONOPT—A Large-Scale GRG Code," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 207-216, May.
    3. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    4. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    5. Pavlo Muts & Ivo Nowak & Eligius M. T. Hendrix, 2020. "The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming," Journal of Global Optimization, Springer, vol. 77(1), pages 75-96, May.
    6. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    7. Hassan Hijazi & Pierre Bonami & Adam Ouorou, 2014. "An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 31-44, February.
    8. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
    9. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    10. Robert Fourer & Jun Ma & Kipp Martin, 2010. "OSiL: An instance language for optimization," Computational Optimization and Applications, Springer, vol. 45(1), pages 181-203, January.
    11. Jan Kronqvist & Andreas Lundell & Tapio Westerlund, 2018. "Reformulations for utilizing separability when solving convex MINLP problems," Journal of Global Optimization, Springer, vol. 71(3), pages 571-592, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Lundell & Jan Kronqvist, 2022. "Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT," Journal of Global Optimization, Springer, vol. 82(4), pages 863-896, April.
    2. Alexander Murray & Timm Faulwasser & Veit Hagenmeyer & Mario E. Villanueva & Boris Houska, 2021. "Partially distributed outer approximation," Journal of Global Optimization, Springer, vol. 80(3), pages 523-550, July.
    3. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    4. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    5. Klaus Mittenzwei & Wolfgang Britz, 2018. "Analysing Farm‐specific Payments for Norway using the Agrispace Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 777-793, September.
    6. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    7. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    8. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    9. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    10. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    11. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    12. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2022. "Framework for embedding black-box simulation into mathematical programming via kriging surrogate model applied to natural gas liquefaction process optimization," Applied Energy, Elsevier, vol. 310(C).
    13. Durand-Lasserve, Olivier & Almutairi, Hossa & Aljarboua, Abdullah & Pierru, Axel & Pradhan, Shreekar & Murphy, Frederic, 2023. "Hard-linking a top-down economic model with a bottom-up energy system for an oil-exporting country with price controls," Energy, Elsevier, vol. 266(C).
    14. Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
    15. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    16. Rastinejad, Justin & Putnam, Sloane & Stuber, Matthew D., 2023. "Technoeconomic assessment of solar technologies for the hybridization of industrial process heat systems using deterministic global dynamic optimization," Renewable Energy, Elsevier, vol. 216(C).
    17. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    18. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    19. Leon Lasdon & Judith S. Liebman, 1998. "The Teachers' Forum: Teaching Nonlinear Programming Using Cooperative Active Learning," Interfaces, INFORMS, vol. 28(4), pages 119-132, August.
    20. Marian Leimbach & Anselm Schultes & Lavinia Baumstark & Anastasis Giannousakis & Gunnar Luderer, 2017. "Solution algorithms for regional interactions in large-scale integrated assessment models of climate change," Annals of Operations Research, Springer, vol. 255(1), pages 29-45, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:1:d:10.1007_s10898-022-01128-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.