IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2222-d1436344.html
   My bibliography  Save this article

Research on Risk-Averse Procurement Optimization of Emergency Supplies for Mine Thermodynamic Disasters

Author

Listed:
  • Weimei Li

    (School of Business Administration, Liaoning Technical University, Huludao 125105, China
    Institute for Optimization and Decision Analytics, Liaoning Technical University, Fuxin 123000, China)

  • Leifu Gao

    (Institute for Optimization and Decision Analytics, Liaoning Technical University, Fuxin 123000, China)

Abstract

Reducing procurement risks to ensure the supply of emergency supplies is crucial for mitigating the losses caused by mine thermodynamic disasters. The risk preference of decision-makers and supply chain collaboration are the important aspects for this reductiom. In this study, a novel P-CVaR (Piecewise conditional risk value) distributionally robust optimization model is proposed to accurately assist the decision-makers’ decision of risk preference for reducing procurement risks. Meanwhile, the role of cooperation between procurement and reserves are considered for the weakening procurement risks. A risk-averse bi-level optimization model is proposed to obtain the optimal procurement strategy. Furthermore, by applying the Lagrange duality theorem, the complexity of the bi-level optimization model is simplified then solved using a PSO algorithm. Using empirical analysis, it has been verified that the model presented in this paper serves as a valuable guideline for mine thermodynamic pre-disaster emergency material procurement strategies for the prevention of thermodynamic disasters.

Suggested Citation

  • Weimei Li & Leifu Gao, 2024. "Research on Risk-Averse Procurement Optimization of Emergency Supplies for Mine Thermodynamic Disasters," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2222-:d:1436344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    2. Jiang-Hua Zhang & Xiao-Qing Sun & Rui Zhu & Ming Li & Wang Miao, 2017. "Solving an emergency rescue materials problem under the joint reserves mode of government and framework agreement suppliers," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-20, October.
    3. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    4. Thevenin, Simon & Ben-Ammar, Oussama & Brahimi, Nadjib, 2022. "Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1199-1215.
    5. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    6. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.
    7. Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
    8. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    2. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    3. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    4. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    5. Anthony Coache & Sebastian Jaimungal, 2024. "Robust Reinforcement Learning with Dynamic Distortion Risk Measures," Papers 2409.10096, arXiv.org.
    6. Spiridon Penev & Pavel Shevchenko & Wei Wu, 2019. "Myopic robust index tracking with Bregman divergence," Papers 1908.07659, arXiv.org, revised Jul 2021.
    7. Paul Glasserman & Wanmo Kang, 2014. "OR Forum—Design of Risk Weights," Operations Research, INFORMS, vol. 62(6), pages 1204-1220, December.
    8. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    9. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    10. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    12. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    13. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    14. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    15. Stepankova, Barbora & Teply, Petr, 2023. "Consistency of banks' internal probability of default estimates: Empirical evidence from the COVID-19 crisis," Journal of Banking & Finance, Elsevier, vol. 154(C).
    16. Roberto Baviera & Giulia Bianchi, 2019. "Model risk in mean-variance portfolio selection: an analytic solution to the worst-case approach," Papers 1902.06623, arXiv.org, revised Dec 2019.
    17. Sebastian Jaimungal & Silvana M. Pesenti & Leandro S'anchez-Betancourt, 2022. "Minimal Kullback-Leibler Divergence for Constrained L\'evy-It\^o Processes," Papers 2206.14844, arXiv.org, revised Aug 2022.
    18. Bidder, R.M. & Smith, M.E., 2018. "Doubts and variability: A robust perspective on exotic consumption series," Journal of Economic Theory, Elsevier, vol. 175(C), pages 689-712.
    19. Yu Feng & Erik Schlogl, 2018. "Model Risk Measurement Under Wasserstein Distance," Research Paper Series 393, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2222-:d:1436344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.