IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v237y2016i1p99-12010.1007-s10479-013-1391-7.html
   My bibliography  Save this article

Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy

Author

Listed:
  • Somayeh Moazeni
  • Thomas Coleman
  • Yuying Li

Abstract

Computing optimal stochastic portfolio execution strategies under an appropriate risk consideration presents many computational challenges. Using Monte Carlo simulations, we investigate an approach based on smoothing and parametric rules to minimize mean and Conditional Value-at-Risk (CVaR) of the execution cost. The proposed approach reduces computational complexity by smoothing the nondifferentiability arising from the simulation discretization and by employing a parametric representation of a stochastic strategy. We further handle constraints using a smoothed exact penalty function. Using the downside risk as an example, we show that the proposed approach can be generalized to other risk measures. In addition, we computationally illustrate the effect of including risk on the stochastic optimal execution strategy. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Somayeh Moazeni & Thomas Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
  • Handle: RePEc:spr:annopr:v:237:y:2016:i:1:p:99-120:10.1007/s10479-013-1391-7
    DOI: 10.1007/s10479-013-1391-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1391-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1391-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yau, Sheena & Kwon, Roy H. & Scott Rogers, J. & Wu, Desheng, 2011. "Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion," International Journal of Production Economics, Elsevier, vol. 134(1), pages 67-77, November.
    2. Gur Huberman & Werner Stanzl, 2005. "Optimal Liquidity Trading," Review of Finance, European Finance Association, vol. 9(2), pages 165-200.
    3. Grossman, Sanford J. & Vila, Jean-Luc, 1992. "Optimal Dynamic Trading with Leverage Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 151-168, June.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    5. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    9. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    10. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    11. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping-Chen Chang, 2019. "Reliability estimation for a stochastic production system with finite buffer storage by a simulation approach," Annals of Operations Research, Springer, vol. 277(1), pages 119-133, June.
    2. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    3. Wei Chen & Yun Wang & Mukesh Kumar Mehlawat, 2018. "A hybrid FA–SA algorithm for fuzzy portfolio selection with transaction costs," Annals of Operations Research, Springer, vol. 269(1), pages 129-147, October.
    4. Wei Chen & Yuxi Gai & Pankaj Gupta, 2018. "Efficiency evaluation of fuzzy portfolio in different risk measures via DEA," Annals of Operations Research, Springer, vol. 269(1), pages 103-127, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    2. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    5. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    6. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. Roberto Andreotti Bodra & Afonso De Campos Pint, 2014. "Modelo De Volatilidade Estocástica Com Saltos Aplicado A Commodities Agrícolas," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 142, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    10. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    11. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    12. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    14. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    15. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    16. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    17. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    18. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    19. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    20. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:237:y:2016:i:1:p:99-120:10.1007/s10479-013-1391-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.