IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i4d10.1007_s10898-022-01178-4.html
   My bibliography  Save this article

Alternative regularizations for Outer-Approximation algorithms for convex MINLP

Author

Listed:
  • David E. Bernal

    (NASA Ames Research Center
    Universities Space Research Association
    Carnegie Mellon University)

  • Zedong Peng

    (Zhejiang University
    Business Growth BU, JD.com)

  • Jan Kronqvist

    (KTH Royal Institute of Technology
    Imperial College London)

  • Ignacio E. Grossmann

    (Carnegie Mellon University)

Abstract

In this work, we extend the regularization framework from Kronqvist et al. (Math Program 180(1):285–310, 2020) by incorporating several new regularization functions and develop a regularized single-tree search method for solving convex mixed-integer nonlinear programming (MINLP) problems. We propose a set of regularization functions based on distance metrics and Lagrangean approximations, used in the projection problem for finding new integer combinations to be used within the Outer-Approximation (OA) method. The new approach, called Regularized Outer-Approximation (ROA), has been implemented as part of the open-source Mixed-integer nonlinear decomposition toolbox for Pyomo—MindtPy. We compare the OA method with seven regularization function alternatives for ROA. Moreover, we extend the LP/NLP Branch and Bound method proposed by Quesada and Grossmann (Comput Chem Eng 16(10–11):937–947, 1992) to include regularization in an algorithm denoted RLP/NLP. We provide convergence guarantees for both ROA and RLP/NLP. Finally, we perform an extensive computational experiment considering all convex MINLP problems in the benchmark library MINLPLib. The computational results show clear advantages of using regularization combined with the OA method.

Suggested Citation

  • David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01178-4
    DOI: 10.1007/s10898-022-01178-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01178-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01178-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    2. William E. Hart & Carl D. Laird & Jean-Paul Watson & David L. Woodruff & Gabriel A. Hackebeil & Bethany L. Nicholson & John D. Siirola, 2017. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-58821-6, December.
    3. Jan Kronqvist & Andreas Lundell & Tapio Westerlund, 2018. "Reformulations for utilizing separability when solving convex MINLP problems," Journal of Global Optimization, Springer, vol. 71(3), pages 571-592, July.
    4. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    5. Leo Liberti & Fabrizio Marinelli, 2014. "Mathematical programming: Turing completeness and applications to software analysis," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 82-104, July.
    6. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    7. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    8. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Lundell & Jan Kronqvist, 2022. "Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT," Journal of Global Optimization, Springer, vol. 82(4), pages 863-896, April.
    2. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    3. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    4. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    5. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    6. Alexander Murray & Timm Faulwasser & Veit Hagenmeyer & Mario E. Villanueva & Boris Houska, 2021. "Partially distributed outer approximation," Journal of Global Optimization, Springer, vol. 80(3), pages 523-550, July.
    7. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    8. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    9. Francisco Trespalacios & Ignacio E. Grossmann, 2015. "Algorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 59-74, February.
    10. Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
    11. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    12. Maurizio Bruglieri & Roberto Cordone & Leo Liberti, 2022. "Maximum feasible subsystems of distance geometry constraints," Journal of Global Optimization, Springer, vol. 83(1), pages 29-47, May.
    13. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    14. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    15. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    16. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    17. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    18. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    19. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    20. Terzi, Mourad & Ouazene, Yassine & Yalaoui, Alice & Yalaoui, Farouk, 2023. "Lot-sizing and pricing decisions under attraction demand models and multi-channel environment: New efficient formulations," Operations Research Perspectives, Elsevier, vol. 10(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01178-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.