IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i1d10.1057_palgrave.jors.2601652.html
   My bibliography  Save this article

A two-stage stochastic programming framework for transportation planning in disaster response

Author

Listed:
  • G Barbarosoǧlu

    (Boǧaziçi University)

  • Y Arda

    (Boǧaziçi University)

Abstract

This study proposes a two-stage stochastic programming model to plan the transportation of vital first-aid commodities to disaster-affected areas during emergency response. A multi-commodity, multi-modal network flow formulation is developed to describe the flow of material over an urban transportation network. Since it is difficult to predict the timing and magnitude of any disaster and its impact on the urban system, resource mobilization is treated in a random manner, and the resource requirements are represented as random variables. Furthermore, uncertainty arising from the vulnerability of the transportation system leads to random arc capacities and supply amounts. Randomness is represented by a finite sample of scenarios for capacity, supply and demand triplet. The two stages are defined with respect to information asymmetry, which discloses uncertainty during the progress of the response. The approach is validated by quantifying the expected value of perfect and stochastic information in problem instances generated out of actual data.

Suggested Citation

  • G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:1:d:10.1057_palgrave.jors.2601652
    DOI: 10.1057/palgrave.jors.2601652
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601652
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linos F. Frantzeskakis & Warren B. Powell, 1990. "A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems," Transportation Science, INFORMS, vol. 24(1), pages 40-57, February.
    2. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    3. Warren B. Powell & Linos F. Frantzeskakis, 1994. "Restricted Recourse Strategies for Dynamic Networks with Random Arc Capacities," Transportation Science, INFORMS, vol. 28(1), pages 3-23, February.
    4. Vladimirou, Hercules & Zenios, Stavros A., 1997. "Stochastic linear programs with restricted recourse," European Journal of Operational Research, Elsevier, vol. 101(1), pages 177-192, August.
    5. Raymond K. Cheung & Warren B. Powell, 1996. "An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management," Operations Research, INFORMS, vol. 44(6), pages 951-963, December.
    6. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    7. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    8. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    9. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiqing & Cheung, Raymond K. & Wang, Haiyan, 2014. "An arc-exchange decomposition method for multistage dynamic networks with random arc capacities," European Journal of Operational Research, Elsevier, vol. 233(3), pages 474-487.
    2. Alexander S. Estes & Michael O. Ball, 2021. "Monge Properties, Optimal Greedy Policies, and Policy Improvement for the Dynamic Stochastic Transportation Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 785-807, May.
    3. Song, Haiqing & Huang, Huei-Chuen, 2008. "A successive convex approximation method for multistage workforce capacity planning problem with turnover," European Journal of Operational Research, Elsevier, vol. 188(1), pages 29-48, July.
    4. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    5. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    6. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    7. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    8. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    9. Raymond K. Cheung & Chuen-Yih Chen, 1998. "A Two-Stage Stochastic Network Model and Solution Methods for the Dynamic Empty Container Allocation Problem," Transportation Science, INFORMS, vol. 32(2), pages 142-162, May.
    10. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    11. Raymond K.-M. Cheung & Warren B. Powell, 2000. "Shape -- A Stochastic Hybrid Approximation Procedure for Two-Stage Stochastic Programs," Operations Research, INFORMS, vol. 48(1), pages 73-79, February.
    12. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    13. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    14. Zenios, Stavros A. & Holmer, Martin R. & McKendall, Raymond & Vassiadou-Zeniou, Christiana, 1998. "Dynamic models for fixed-income portfolio management under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1517-1541, August.
    15. Messina, E. & Mitra, G., 1997. "Modelling and analysis of multistage stochastic programming problems: A software environment," European Journal of Operational Research, Elsevier, vol. 101(2), pages 343-359, September.
    16. Andrea Beltratti & Andrea Consiglio & Stavros Zenios, 1999. "Scenario modeling for the management ofinternational bond portfolios," Annals of Operations Research, Springer, vol. 85(0), pages 227-247, January.
    17. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    18. David P. Morton & R. Kevin Wood, 1999. "Restricted-Recourse Bounds for Stochastic Linear Programming," Operations Research, INFORMS, vol. 47(6), pages 943-956, December.
    19. Chang, Tsung-Sheng, 2009. "Decision support for truckload carriers in one-shot combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 522-541, June.
    20. Alysson Costa & Lana Santos & Douglas Alem & Ricardo Santos, 2014. "Sustainable vegetable crop supply problem with perishable stocks," Annals of Operations Research, Springer, vol. 219(1), pages 265-283, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:1:d:10.1057_palgrave.jors.2601652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.