IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v262y2018i1d10.1007_s10479-016-2212-6.html
   My bibliography  Save this article

Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights

Author

Listed:
  • Maciej Rysz

    (National Research Council, Air Force Research Laboratory)

  • Foad Mahdavi Pajouh

    (University of Massachusetts Boston)

  • Pavlo Krokhmal

    (University of Arizona)

  • Eduardo L. Pasiliao

    (Air Force Research Laboratory)

Abstract

In this work, we study the problem of detecting risk-averse low-diameter clusters in graphs. It is assumed that the clusters represent k-clubs and that uncertain information manifests itself in the form of stochastic vertex weights whose joint distribution is known. The goal is to find a k-club of minimum risk contained in the graph. A stochastic programming framework that is based on the formalism of coherent risk measures is used to quantify the risk of a cluster. We show that the selected representation of risk guarantees that the optimal subgraphs are maximal clusters. A combinatorial branch-and-bound algorithm is proposed and its computational performance is compared with an equivalent mathematical programming approach for instances with $$k=2,3,$$ k = 2 , 3 , and 4.

Suggested Citation

  • Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
  • Handle: RePEc:spr:annopr:v:262:y:2018:i:1:d:10.1007_s10479-016-2212-6
    DOI: 10.1007/s10479-016-2212-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2212-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2212-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    5. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    6. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    7. Anupam Gupta & Viswanath Nagarajan & R. Ravi, 2012. "Technical Note---Approximation Algorithms for VRP with Stochastic Demands," Operations Research, INFORMS, vol. 60(1), pages 123-127, February.
    8. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    9. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    10. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    11. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    12. Bourjolly, Jean-Marie & Laporte, Gilbert & Pesant, Gilles, 2002. "An exact algorithm for the maximum k-club problem in an undirected graph," European Journal of Operational Research, Elsevier, vol. 138(1), pages 21-28, April.
    13. Maciej Rysz & Mohammad Mirghorbani & Pavlo Krokhmal & Eduardo L. Pasiliao, 2014. "On risk-averse maximum weighted subgraph problems," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 167-185, July.
    14. R. Luce, 1950. "Connectivity and generalized cliques in sociometric group structure," Psychometrika, Springer;The Psychometric Society, vol. 15(2), pages 169-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Rysz & Mohammad Mirghorbani & Pavlo Krokhmal & Eduardo L. Pasiliao, 2014. "On risk-averse maximum weighted subgraph problems," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 167-185, July.
    2. Foad Mahdavi Pajouh & Esmaeel Moradi & Balabhaskar Balasundaram, 2017. "Detecting large risk-averse 2-clubs in graphs with random edge failures," Annals of Operations Research, Springer, vol. 249(1), pages 55-73, February.
    3. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    4. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    5. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    6. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    7. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    8. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    9. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    10. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    11. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    12. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    13. Niels Grüttemeier & Philipp Heinrich Keßler & Christian Komusiewicz & Frank Sommer, 2024. "Efficient branch-and-bound algorithms for finding triangle-constrained 2-clubs," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-27, October.
    14. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    15. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    16. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    17. Almeida, Maria Teresa & Carvalho, Filipa D., 2014. "An analytical comparison of the LP relaxations of integer models for the k-club problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 489-498.
    18. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    19. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    20. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:262:y:2018:i:1:d:10.1007_s10479-016-2212-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.