IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i2d10.1007_s10589-021-00335-x.html
   My bibliography  Save this article

Linearization and parallelization schemes for convex mixed-integer nonlinear optimization

Author

Listed:
  • Meenarli Sharma

    (Indian Institute of Technology Bombay)

  • Prashant Palkar

    (Indian Institute of Technology Bombay)

  • Ashutosh Mahajan

    (Indian Institute of Technology Bombay)

Abstract

We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate nonlinear functions and are more effective than other general approaches. These techniques have been implemented in the Minotaur toolkit. Tests on benchmark instances show up to 12% improvement in the average time to solve the instances. Shared-memory parallel versions of NLP based branch-and-bound and LP/NLP based branch-and-bound algorithms have also been developed in the toolkit. These implementations solve different nodes of branch-and-bound concurrently. About 44% improvement in the speed and an increase in the number of instances solved within the time limit are observed when the two schemes are used together on a computer with 16 cores. These parallelization methods are compared to alternate approaches that exploit parallelism in existing commercial MILP solvers. The latter approaches are seen to perform better thus highlighting the importance of MILP techniques.

Suggested Citation

  • Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00335-x
    DOI: 10.1007/s10589-021-00335-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00335-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00335-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Bixby & Edward Rothberg, 2007. "Progress in computational mixed integer programming—A look back from the other side of the tipping point," Annals of Operations Research, Springer, vol. 149(1), pages 37-41, February.
    2. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    3. Lluís-Miquel Munguía & Geoffrey Oxberry & Deepak Rajan & Yuji Shinano, 2019. "Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programs," Computational Optimization and Applications, Springer, vol. 73(2), pages 575-601, June.
    4. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    5. Yuji Shinano, 2018. "The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound," Operations Research Proceedings, in: Natalia Kliewer & Jan Fabian Ehmke & Ralf Borndörfer (ed.), Operations Research Proceedings 2017, pages 143-149, Springer.
    6. Hassan Hijazi & Pierre Bonami & Adam Ouorou, 2014. "An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 31-44, February.
    7. Y. Xu & T. K. Ralphs & L. Ladányi & M. J. Saltzman, 2009. "Computational Experience with a Software Framework for Parallel Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 383-397, August.
    8. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    9. Timo Berthold, 2018. "A computational study of primal heuristics inside an MI(NL)P solver," Journal of Global Optimization, Springer, vol. 70(1), pages 189-206, January.
    10. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    2. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    3. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    4. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    5. Francisco Trespalacios & Ignacio E. Grossmann, 2015. "Algorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 59-74, February.
    6. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    7. Andreas Lundell & Jan Kronqvist, 2022. "Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT," Journal of Global Optimization, Springer, vol. 82(4), pages 863-896, April.
    8. Alexander Murray & Timm Faulwasser & Veit Hagenmeyer & Mario E. Villanueva & Boris Houska, 2021. "Partially distributed outer approximation," Journal of Global Optimization, Springer, vol. 80(3), pages 523-550, July.
    9. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    10. Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
    11. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    12. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    13. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    14. Marcia Fampa & Jon Lee & Wendel Melo, 2016. "A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space," Computational Optimization and Applications, Springer, vol. 65(1), pages 47-71, September.
    15. Pia Domschke & Bjorn Geißler & Oliver Kolb & Jens Lang & Alexander Martin & Antonio Morsi, 2011. "Combination of Nonlinear and Linear Optimization of Transient Gas Networks," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 605-617, November.
    16. Xiaoyi Gu & Santanu S. Dey & Jean-Philippe P. Richard, 2024. "Solving Sparse Separable Bilinear Programs Using Lifted Bilinear Cover Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 884-899, May.
    17. Jianyuan Zhai & Fani Boukouvala, 2022. "Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 21-50, January.
    18. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    19. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    20. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00335-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.