IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v173y2006i2p683-700.html
   My bibliography  Save this article

Manufacturing lead time estimation using data mining

Author

Listed:
  • Ozturk, Atakan
  • Kayaligil, Sinan
  • Ozdemirel, Nur E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ozturk, Atakan & Kayaligil, Sinan & Ozdemirel, Nur E., 2006. "Manufacturing lead time estimation using data mining," European Journal of Operational Research, Elsevier, vol. 173(2), pages 683-700, September.
  • Handle: RePEc:eee:ejores:v:173:y:2006:i:2:p:683-700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00335-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James K. Weeks, 1979. "A Simulation Study of Predictable Due-Dates," Management Science, INFORMS, vol. 25(4), pages 363-373, April.
    2. Kingsman, Brian & Hendry, Linda & Mercer, Alan & de Souza, Antonio, 1996. "Responding to customer enquiries in make-to-order companies Problems and solutions," International Journal of Production Economics, Elsevier, vol. 46(1), pages 219-231, December.
    3. Tatsiopoulos, I. P. & Kingsman, B. G., 1983. "Lead time management," European Journal of Operational Research, Elsevier, vol. 14(4), pages 351-358, December.
    4. Ramasesh, R, 1990. "Dynamic job shop scheduling: A survey of simulation research," Omega, Elsevier, vol. 18(1), pages 43-57.
    5. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
    6. Abraham Seidmann & Milton L. Smith, 1981. "Due Date Assignment for Production Systems," Management Science, INFORMS, vol. 27(5), pages 571-581, May.
    7. van Ooijen, H. P. G. & Bertrand, J. W. M., 2001. "Economic due-date setting in job-shops based on routing and workload dependent flow time distribution functions," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 261-268, December.
    8. Cheng, T. C. E. & Gupta, M. C., 1989. "Survey of scheduling research involving due date determination decisions," European Journal of Operational Research, Elsevier, vol. 38(2), pages 156-166, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolaños, Rubén Darío Solarte & Barbalho, Sanderson César Macêdo, 2021. "Exploring product complexity and prototype lead-times to predict new product development cycle-times," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    3. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    4. Corne, David & Dhaenens, Clarisse & Jourdan, Laetitia, 2012. "Synergies between operations research and data mining: The emerging use of multi-objective approaches," European Journal of Operational Research, Elsevier, vol. 221(3), pages 469-479.
    5. Antonio Lorenzo-Espejo & Alejandro Escudero-Santana & María-Luisa Muñoz-Díaz & Alicia Robles-Velasco, 2022. "Machine Learning-Based Analysis of a Wind Turbine Manufacturing Operation: A Case Study," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    6. Julia Pahl & Stefan Voß & David Woodruff, 2007. "Production planning with load dependent lead times: an update of research," Annals of Operations Research, Springer, vol. 153(1), pages 297-345, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinar Keskinocak & R. Ravi & Sridhar Tayur, 2001. "Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues," Management Science, INFORMS, vol. 47(2), pages 264-279, February.
    2. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
    3. Land, Martin & Gaalman, Gerard, 1996. "Workload control concepts in job shops A critical assessment," International Journal of Production Economics, Elsevier, vol. 46(1), pages 535-548, December.
    4. Enns, S. T., 1998. "Lead time selection and the behaviour of work flow in job shops," European Journal of Operational Research, Elsevier, vol. 109(1), pages 122-136, August.
    5. repec:dgr:rugsom:95a42 is not listed on IDEAS
    6. Land, Martin J. & Gaalman, Gerard J.C., 1995. "Workload control concepts in job shops: a critical assessment," Research Report 95A42, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    7. Bonfatti, M. & Caridi, M. & Schiavina, L., 2006. "A fuzzy model for load-oriented manufacturing control," International Journal of Production Economics, Elsevier, vol. 104(2), pages 502-513, December.
    8. Song, D. P. & Hicks, C. & Earl, C. F., 2002. "Product due date assignment for complex assemblies," International Journal of Production Economics, Elsevier, vol. 76(3), pages 243-256, April.
    9. Saeed Yaghoubi, 2015. "Due-date assignment for multi-server multi-stage assembly systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1246-1256, May.
    10. Corti, Donatella & Pozzetti, Alessandro & Zorzini, Marta, 2006. "A capacity-driven approach to establish reliable due dates in a MTO environment," International Journal of Production Economics, Elsevier, vol. 104(2), pages 536-554, December.
    11. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
    12. Nekoiemehr, Nooshin & Zhang, Guoqing & Selvarajah, Esaignani, 2019. "Due date quotation in a dual-channel supply chain," International Journal of Production Economics, Elsevier, vol. 215(C), pages 102-111.
    13. Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
    14. Kedar S. Naphade & S. David Wu & Robert H. Storer & Bhavin J. Doshi, 2001. "Melt Scheduling to Trade Off Material Waste and Shipping Performance," Operations Research, INFORMS, vol. 49(5), pages 629-645, October.
    15. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    16. Mark L. Spearman & Rachel Q. Zhang, 1999. "Optimal Lead Time Policies," Management Science, INFORMS, vol. 45(2), pages 290-295, February.
    17. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    18. H.M. Raaymakers, Wenny & Will M. Bertrand, J. & C. Fransoo, Jan, 2001. "Makespan estimation in batch process industries using aggregate resource and job set characteristics," International Journal of Production Economics, Elsevier, vol. 70(2), pages 145-161, March.
    19. Koulamas, Christos & Kyparisis, George J., 2008. "Single-machine scheduling with waiting-time-dependent due dates," European Journal of Operational Research, Elsevier, vol. 191(2), pages 577-581, December.
    20. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    21. An Pan & Tsan-Ming Choi, 2016. "An agent-based negotiation model on price and delivery date in a fashion supply chain," Annals of Operations Research, Springer, vol. 242(2), pages 529-557, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:173:y:2006:i:2:p:683-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.