IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v145y2003i1p14-30.html
   My bibliography  Save this article

Makespan estimation in batch process industries: A comparison between regression analysis and neural networks

Author

Listed:
  • Raaymakers, W. H. M.
  • Weijters, A. J. M. M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
  • Handle: RePEc:eee:ejores:v:145:y:2003:i:1:p:14-30
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00173-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raaymakers, W. H. M. & Hoogeveen, J. A., 2000. "Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing," European Journal of Operational Research, Elsevier, vol. 126(1), pages 131-151, October.
    2. Sabuncuoglu, Ihsan & Gurgun, Burckaan, 1996. "A neural network model for scheduling problems," European Journal of Operational Research, Elsevier, vol. 93(2), pages 288-299, September.
    3. Satake, Tsuyoshi & Morikawa, Katsumi & Nakamura, Nobuto, 1994. "Neural network approach for minimizing the makespan of the general job-shop," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 67-74, January.
    4. Raaymakers, Wenny H. M. & Fransoo, Jan C., 2000. "Identification of aggregate resource and job set characteristics for predicting job set makespan in batch process industries," International Journal of Production Economics, Elsevier, vol. 68(2), pages 137-149, November.
    5. Enns, S. T., 1998. "Lead time selection and the behaviour of work flow in job shops," European Journal of Operational Research, Elsevier, vol. 109(1), pages 122-136, August.
    6. James K. Weeks, 1979. "A Simulation Study of Predictable Due-Dates," Management Science, INFORMS, vol. 25(4), pages 363-373, April.
    7. Cheng, T. C. E. & Gupta, M. C., 1989. "Survey of scheduling research involving due date determination decisions," European Journal of Operational Research, Elsevier, vol. 38(2), pages 156-166, January.
    8. H.M. Raaymakers, Wenny & Will M. Bertrand, J. & C. Fransoo, Jan, 2001. "Makespan estimation in batch process industries using aggregate resource and job set characteristics," International Journal of Production Economics, Elsevier, vol. 70(2), pages 145-161, March.
    9. J. W. M. Bertrand, 1983. "The Effect of Workload Dependent Due-Dates on Job Shop Performance," Management Science, INFORMS, vol. 29(7), pages 799-816, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    2. Lixin Cheng & Qiuhua Tang & Zikai Zhang & Shiqian Wu, 2021. "Data mining for fast and accurate makespan estimation in machining workshops," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 483-500, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raaymakers, Wenny H. M. & Fransoo, Jan C., 2000. "Identification of aggregate resource and job set characteristics for predicting job set makespan in batch process industries," International Journal of Production Economics, Elsevier, vol. 68(2), pages 137-149, November.
    2. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
    3. H.M. Raaymakers, Wenny & Will M. Bertrand, J. & C. Fransoo, Jan, 2001. "Makespan estimation in batch process industries using aggregate resource and job set characteristics," International Journal of Production Economics, Elsevier, vol. 70(2), pages 145-161, March.
    4. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    5. Enns, S. T., 1998. "Lead time selection and the behaviour of work flow in job shops," European Journal of Operational Research, Elsevier, vol. 109(1), pages 122-136, August.
    6. Pinar Keskinocak & R. Ravi & Sridhar Tayur, 2001. "Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues," Management Science, INFORMS, vol. 47(2), pages 264-279, February.
    7. Roman Kapuscinski & Sridhar Tayur, 2007. "Reliable Due-Date Setting in a Capacitated MTO System with Two Customer Classes," Operations Research, INFORMS, vol. 55(1), pages 56-74, February.
    8. Nekoiemehr, Nooshin & Zhang, Guoqing & Selvarajah, Esaignani, 2019. "Due date quotation in a dual-channel supply chain," International Journal of Production Economics, Elsevier, vol. 215(C), pages 102-111.
    9. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    10. Ozturk, Atakan & Kayaligil, Sinan & Ozdemirel, Nur E., 2006. "Manufacturing lead time estimation using data mining," European Journal of Operational Research, Elsevier, vol. 173(2), pages 683-700, September.
    11. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    12. V C Ivănescu & J W M Bertrand & J C Fransoo & J P C Kleijnen, 2006. "Bootstrapping to solve the limited data problem in production control: an application in batch process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 2-9, January.
    13. He, Zesheng & Yang, Taeyong & Tiger, Andy, 1996. "An exchange heuristic imbedded with simulated annealing for due-dates job-shop scheduling," European Journal of Operational Research, Elsevier, vol. 91(1), pages 99-117, May.
    14. Easton, Fred F. & Moodie, Douglas R., 1999. "Pricing and lead time decisions for make-to-order firms with contingent orders," European Journal of Operational Research, Elsevier, vol. 116(2), pages 305-318, July.
    15. Song, D. P. & Hicks, C. & Earl, C. F., 2002. "Product due date assignment for complex assemblies," International Journal of Production Economics, Elsevier, vol. 76(3), pages 243-256, April.
    16. Agarwal, Anurag & Colak, Selcuk & Jacob, Varghese S. & Pirkul, Hasan, 2006. "Heuristics and augmented neural networks for task scheduling with non-identical machines," European Journal of Operational Research, Elsevier, vol. 175(1), pages 296-317, November.
    17. Mark L. Spearman & Rachel Q. Zhang, 1999. "Optimal Lead Time Policies," Management Science, INFORMS, vol. 45(2), pages 290-295, February.
    18. Erica L. Plambeck, 2004. "Optimal Leadtime Differentiation via Diffusion Approximations," Operations Research, INFORMS, vol. 52(2), pages 213-228, April.
    19. ElHafsi, Mohsen, 2000. "An operational decision model for lead-time and price quotation in congested manufacturing systems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 355-370, October.
    20. Koulamas, Christos & Kyparisis, George J., 2008. "Single-machine scheduling with waiting-time-dependent due dates," European Journal of Operational Research, Elsevier, vol. 191(2), pages 577-581, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:145:y:2003:i:1:p:14-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.