IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v411y2019ics0304380019302923.html
   My bibliography  Save this article

How to make ecological models useful for environmental management

Author

Listed:
  • Schuwirth, Nele
  • Borgwardt, Florian
  • Domisch, Sami
  • Friedrichs, Martin
  • Kattwinkel, Mira
  • Kneis, David
  • Kuemmerlen, Mathias
  • Langhans, Simone D.
  • Martínez-López, Javier
  • Vermeiren, Peter

Abstract

Understanding and predicting the ecological consequences of different management alternatives is becoming increasingly important to support environmental management decisions. Ecological models could contribute to such predictions, but in the past this was often not the case. Ecological models are often developed within research projects but are rarely used for practical applications. In this synthesis paper, we discuss how to strengthen the role of ecological modeling in supporting environmental management decisions with a focus on methodological aspects. We address mainly ecological modellers but also potential users of modeling results. Various modeling approaches can be used to predict the response of ecosystems to anthropogenic interventions, including mechanistic models, statistical models, and machine learning approaches. Regardless of the chosen approach, we outline how to better align the modeling to the decision making process, and identify six requirements that we believe are important to increase the usefulness of ecological models for management support, especially if management decisions need to be justified to the public. These cover: (i) a mechanistic understanding regarding causality, (ii) alignment of model input and output with the management decision, (iii) appropriate spatial and temporal resolutions, (iv) uncertainty quantification, (v) sufficient predictive performance, and (vi) transparent communication. We discuss challenges and synthesize suggestions for addressing these points.

Suggested Citation

  • Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019302923
    DOI: 10.1016/j.ecolmodel.2019.108784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. José Montoya & Eloísa Díaz-Francés & David Sprott, 2009. "On a criticism of the profile likelihood function," Statistical Papers, Springer, vol. 50(1), pages 195-202, January.
    3. Ralph L. Keeney, 1982. "Feature Article—Decision Analysis: An Overview," Operations Research, INFORMS, vol. 30(5), pages 803-838, October.
    4. Agnieszka D. Hunka & Mattia Meli & Amalie Thit & Annemette Palmqvist & Pernille Thorbek & Valery E. Forbes, 2013. "Stakeholders’ Perspective on Ecological Modeling in Environmental Risk Assessment of Pesticides: Challenges and Opportunities," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 68-79, January.
    5. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    6. Ryan Hill & Charles Hawkins & Jiming Jin, 2014. "Predicting thermal vulnerability of stream and river ecosystems to climate change," Climatic Change, Springer, vol. 125(3), pages 399-412, August.
    7. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    8. Davide Castelvecchi, 2016. "Can we open the black box of AI?," Nature, Nature, vol. 538(7623), pages 20-23, October.
    9. Ramin, Maryam & Labencki, Tanya & Boyd, Duncan & Trolle, Dennis & Arhonditsis, George B., 2012. "A Bayesian synthesis of predictions from different models for setting water quality criteria," Ecological Modelling, Elsevier, vol. 242(C), pages 127-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    2. Wu, Haoran, 2024. "ecode: An R package to investigate community dynamics in ordinary differential equation systems," Ecological Modelling, Elsevier, vol. 491(C).
    3. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
    4. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    5. Paulin, M.J. & Rutgers, M. & de Nijs, T. & Hendriks, A.J. & Koopman, K.R. & Van Buul, T. & Frambach, M. & Sardano, G. & Breure, A.M., 2020. "Integration of local knowledge and data for spatially quantifying ecosystem services in the Hoeksche Waard, the Netherlands," Ecological Modelling, Elsevier, vol. 438(C).
    6. Lötjönen, Sanna & Ollikainen, Markku & Kotamäki, Niina & Huttunen, Markus & Huttunen, Inese, 2021. "Nutrient load compensation as a means of maintaining the good ecological status of surface waters," Ecological Economics, Elsevier, vol. 188(C).
    7. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    8. Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
    9. dos Anjos, Lucas & Weber, Igor Daniel & Godoy, Wesley Augusto Conde, 2023. "Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour," Ecological Modelling, Elsevier, vol. 484(C).
    10. Caradima, Bogdan & Scheidegger, Andreas & Brodersen, Jakob & Schuwirth, Nele, 2021. "Bridging mechanistic conceptual models and statistical species distribution models of riverine fish," Ecological Modelling, Elsevier, vol. 457(C).
    11. Palamara, Gian Marco & Dennis, Stuart R. & Haenggi, Corinne & Schuwirth, Nele & Reichert, Peter, 2022. "Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model," Ecological Modelling, Elsevier, vol. 472(C).
    12. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    13. Acosta-Arreola, Jaime & Domínguez-Hüttinger, Elisa & Aguirre, Pablo & González, Nicolás & Meave, Jorge A., 2023. "Predicting dynamic trajectories of a protected plant community under contrasting conservation regimes: Insights from data-based modelling," Ecological Modelling, Elsevier, vol. 484(C).
    14. Callesen, I. & Magnussen, A., 2021. "TransparC2U–A two-pool, pedology oriented forest soil carbon simulation model aimed at user investigations of multiple uncertainties," Ecological Modelling, Elsevier, vol. 453(C).
    15. Bobrowski, Maria & Weidinger, Johannes & Schwab, Niels & Schickhoff, Udo, 2021. "Searching for ecology in species distribution models in the Himalayas," Ecological Modelling, Elsevier, vol. 458(C).
    16. Chollet Ramampiandra, Emma & Scheidegger, Andreas & Wydler, Jonas & Schuwirth, Nele, 2023. "A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation," Ecological Modelling, Elsevier, vol. 481(C).
    17. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    4. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    5. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    6. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    7. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    8. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    9. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    12. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    13. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    14. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    15. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    16. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    17. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    18. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    19. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    20. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019302923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.