IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v242y2012icp127-145.html
   My bibliography  Save this article

A Bayesian synthesis of predictions from different models for setting water quality criteria

Author

Listed:
  • Ramin, Maryam
  • Labencki, Tanya
  • Boyd, Duncan
  • Trolle, Dennis
  • Arhonditsis, George B.

Abstract

Skeptical views of the scientific value of modelling argue that there is no true model of an ecological system, but rather several adequate descriptions of different conceptual basis and structure. In this regard, rather than picking the single “best-fit” model to predict future system responses, we can use Bayesian model averaging to synthesize the forecasts from different models. Does the combination of several models of different complexity improve our capacity to synthesize different perceptions of the ecosystem functioning and therefore the value of the modelling enterprise in the context of ecosystem management? Our study addresses this question using a complex (14 state-variable) eutrophication model along with a simpler modelling construct that considers the interplay among phosphate, detritus, and generic phytoplankton and zooplankton state variables. Using Markov Chain Monte Carlo simulations, we calculate the relative mean standard error to assess the posterior support of the two models after considering the available data from the system. Predictions from the two models are then combined using the respective standard error estimates as weights in a weighted model average. The model averaging approach is used to examine the robustness of predictive statements made from our earlier work regarding the response of Hamilton Harbour (Ontario, Canada) to the different nutrient loading reduction strategies. In particular, we consolidate the finding that the existing total phosphorus goal (<17μgL−1) is most likely unattainable, and therefore we identify the most achievable ambient target under the most stringent (but realistic) nutrient loading reduction scenario. Finally, the discrepancy between the chlorophyll a predictions of the two models pinpoint the need to delve into the dynamics of phosphorus in the sediment–water column interface, as the internal nutrient loading can conceivably be a regulatory factor of the duration of the transient phase and the recovery resilience of the system.

Suggested Citation

  • Ramin, Maryam & Labencki, Tanya & Boyd, Duncan & Trolle, Dennis & Arhonditsis, George B., 2012. "A Bayesian synthesis of predictions from different models for setting water quality criteria," Ecological Modelling, Elsevier, vol. 242(C), pages 127-145.
  • Handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:127-145
    DOI: 10.1016/j.ecolmodel.2012.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012002530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    2. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    3. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
    4. McDonald, Cory P. & Urban, Noel R., 2010. "Using a model selection criterion to identify appropriate complexity in aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 221(3), pages 428-432.
    5. Arhonditsis, George B. & Qian, Song S. & Stow, Craig A. & Lamon, E. Conrad & Reckhow, Kenneth H., 2007. "Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake," Ecological Modelling, Elsevier, vol. 208(2), pages 215-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weitao & Kim, Dong-Kyun & Rao, Yerubandi R. & Watson, Sue & Mugalingam, Shan & Labencki, Tanya & Dittrich, Maria & Morley, Andrew & Arhonditsis, George B., 2013. "Can simple phosphorus mass balance models guide management decisions? A case study in the Bay of Quinte, Ontario, Canada," Ecological Modelling, Elsevier, vol. 257(C), pages 66-79.
    2. Forio, Marie Anne Eurie & Landuyt, Dries & Bennetsen, Elina & Lock, Koen & Nguyen, Thi Hanh Tien & Ambarita, Minar Naomi Damanik & Musonge, Peace Liz Sasha & Boets, Pieter & Everaert, Gert & Dominguez, 2015. "Bayesian belief network models to analyse and predict ecological water quality in rivers," Ecological Modelling, Elsevier, vol. 312(C), pages 222-238.
    3. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    4. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McDonald, C.P. & Bennington, V. & Urban, N.R. & McKinley, G.A., 2012. "1-D test-bed calibration of a 3-D Lake Superior biogeochemical model," Ecological Modelling, Elsevier, vol. 225(C), pages 115-126.
    2. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.
    3. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    4. Ramin, Maryam & Perhar, Gurbir & Shimoda, Yuko & Arhonditsis, George B., 2012. "Examination of the effects of nutrient regeneration mechanisms on plankton dynamics using aquatic biogeochemical modeling," Ecological Modelling, Elsevier, vol. 240(C), pages 139-155.
    5. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
    6. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    7. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    8. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    9. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    10. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    11. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    12. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    13. Sándor Baran & Patrícia Szokol & Marianna Szabó, 2021. "Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    14. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    15. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    16. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    17. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    18. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Elio Chiodo & Bassel Diban & Giovanni Mazzanti & Fabio De Angelis, 2023. "A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:127-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.