IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v472y2022ics0304380022001818.html
   My bibliography  Save this article

Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model

Author

Listed:
  • Palamara, Gian Marco
  • Dennis, Stuart R.
  • Haenggi, Corinne
  • Schuwirth, Nele
  • Reichert, Peter

Abstract

Identifying sublethal pesticide effects on aquatic organisms is a challenge for environmental risk assessment. Long-term population experiments can help assessing chronic toxicity. However, population experiments are subject to stochasticity (demographic, environmental, and genetic). Therefore, identifying sublethal chronic effects from “noisy” data can be difficult. Model-based analysis can support this process.

Suggested Citation

  • Palamara, Gian Marco & Dennis, Stuart R. & Haenggi, Corinne & Schuwirth, Nele & Reichert, Peter, 2022. "Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model," Ecological Modelling, Elsevier, vol. 472(C).
  • Handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001818
    DOI: 10.1016/j.ecolmodel.2022.110076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erickson, Richard A. & Cox, Stephen B. & Oates, Jessica L. & Anderson, Todd A. & Salice, Christopher J. & Long, Kevin R., 2014. "A Daphnia population model that considers pesticide exposure and demographic stochasticity," Ecological Modelling, Elsevier, vol. 275(C), pages 37-47.
    2. Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
    3. Edward McCauley & William A. Nelson & Roger M. Nisbet, 2008. "Small-amplitude cycles emerge from stage-structured interactions in Daphnia–algal systems," Nature, Nature, vol. 455(7217), pages 1240-1243, October.
    4. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    5. Preuss, Thomas Günter & Hammers-Wirtz, Monika & Hommen, Udo & Rubach, Mascha Nadine & Ratte, Hans Toni, 2009. "Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics," Ecological Modelling, Elsevier, vol. 220(3), pages 310-329.
    6. Jager, Tjalling, 2020. "Revisiting simplified DEBtox models for analysing ecotoxicity data," Ecological Modelling, Elsevier, vol. 416(C).
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Linde, 2014. "The deviance information criterion: 12 years on," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 485-493, June.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    2. Kelvyn Jones & David Manley & Ron Johnston & Dewi Owen, 2018. "Modelling residential segregation as unevenness and clustering: A multilevel modelling approach incorporating spatial dependence and tackling the MAUP," Environment and Planning B, , vol. 45(6), pages 1122-1141, November.
    3. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    4. Shuhui Guo & Lihua Xiong & Jie Chen & Shenglian Guo & Jun Xia & Ling Zeng & Chong-Yu Xu, 2023. "Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 659-681, January.
    5. Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
    6. Muhammed Semakula & Franco̧is Niragire & Christel Faes, 2020. "Bayesian spatio-temporal modeling of malaria risk in Rwanda," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    7. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    8. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    9. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    10. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    11. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    12. Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021. "Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
    13. Pedro Saramago & Karl Claxton & Nicky J. Welton & Marta Soares, 2020. "Bayesian econometric modelling of observational data for cost‐effectiveness analysis: establishing the value of negative pressure wound therapy in the healing of open surgical wounds," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1575-1593, October.
    14. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    15. Voleti, Sudhir & Srinivasan, V. & Ghosh, Pulak, 2017. "An approach to improve the predictive power of choice-based conjoint analysis," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 325-335.
    16. Jianbin Tan & Ye Shen & Yang Ge & Leonardo Martinez & Hui Huang, 2023. "Age‐related model for estimating the symptomatic and asymptomatic transmissibility of COVID‐19 patients," Biometrics, The International Biometric Society, vol. 79(3), pages 2525-2536, September.
    17. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    18. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    19. Roy Costilla & Ivy Liu & Richard Arnold & Daniel Fernández, 2019. "Bayesian model-based clustering for longitudinal ordinal data," Computational Statistics, Springer, vol. 34(3), pages 1015-1038, September.
    20. Briana J. K. Stephenson & Amy H. Herring & Andrew F. Olshan, 2022. "Derivation of maternal dietary patterns accounting for regional heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1957-1977, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.