IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i23p2760-2768.html
   My bibliography  Save this article

The ODD protocol: A review and first update

Author

Listed:
  • Grimm, Volker
  • Berger, Uta
  • DeAngelis, Donald L.
  • Polhill, J. Gary
  • Giske, Jarl
  • Railsback, Steven F.

Abstract

The ‘ODD’ (Overview, Design concepts, and Details) protocol was published in 2006 to standardize the published descriptions of individual-based and agent-based models (ABMs). The primary objectives of ODD are to make model descriptions more understandable and complete, thereby making ABMs less subject to criticism for being irreproducible. We have systematically evaluated existing uses of the ODD protocol and identified, as expected, parts of ODD needing improvement and clarification. Accordingly, we revise the definition of ODD to clarify aspects of the original version and thereby facilitate future standardization of ABM descriptions. We discuss frequently raised critiques in ODD but also two emerging, and unanticipated, benefits: ODD improves the rigorous formulation of models and helps make the theoretical foundations of large models more visible. Although the protocol was designed for ABMs, it can help with documenting any large, complex model, alleviating some general objections against such models.

Suggested Citation

  • Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2760-2768
    DOI: 10.1016/j.ecolmodel.2010.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001000414X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson Minar & Rogert Burkhart & Chris Langton & Manor Askenazi, 1996. "The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations," Working Papers 96-06-042, Santa Fe Institute.
    2. Caron-Lormier, Geoffrey & Humphry, Roger W. & Bohan, David A. & Hawes, Cathy & Thorbek, Pernille, 2008. "Asynchronous and synchronous updating in individual-based models," Ecological Modelling, Elsevier, vol. 212(3), pages 522-527.
    3. Marco A. Janssen & Lilian N. Alessa & C. Michael Barton & Sean Bergin & Allen Lee, 2008. "Towards a Community Framework for Agent-Based Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-6.
    4. J. Gareth Polhill & Dawn C. Parker & Daniel Brown & Volker Grimm, 2008. "Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-3.
    5. Hellweger, Ferdi L. & Bucci, Vanni, 2009. "A bunch of tiny individuals—Individual-based modeling for microbes," Ecological Modelling, Elsevier, vol. 220(1), pages 8-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    2. Christoph Schlueter-Langdon, 2000. "Information Technology And The Vertical Organization Of Industry," Computing in Economics and Finance 2000 174, Society for Computational Economics.
    3. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    4. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    5. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    6. Fritsch, Coralie & Harmand, Jérôme & Campillo, Fabien, 2015. "A modeling approach of the chemostat," Ecological Modelling, Elsevier, vol. 299(C), pages 1-13.
    7. Moritz, Mark & Hamilton, Ian M. & Yoak, Andrew J. & Scholte, Paul & Cronley, Jeff & Maddock, Paul & Pi, Hongyang, 2015. "Simple movement rules result in ideal free distribution of mobile pastoralists," Ecological Modelling, Elsevier, vol. 305(C), pages 54-63.
    8. Matteo Richiardi & Ross E. Richardson, 2017. "JAS-mine: A new platform for microsimulation and agent-based modelling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 106-134.
    9. Brown, Bijon & Schoney, Richard & Nolan, James, 2021. "Assessing the food vs. fuel issue: An agent-based simulation," Energy Policy, Elsevier, vol. 159(C).
    10. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    11. Bouderbala, Ilhem & El Saadi, Nadjia & Bah, Alassane & Auger, Pierre, 2019. "A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress," Ecological Modelling, Elsevier, vol. 391(C), pages 16-28.
    12. David O'Sullivan & Mordechai Haklay, 2000. "Agent-Based Models and Individualism: Is the World Agent-Based?," Environment and Planning A, , vol. 32(8), pages 1409-1425, August.
    13. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    14. Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
    15. Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
    16. Barton, C. Michael & Ullah, Isaac I.T. & Bergin, Sean M. & Mitasova, Helena & Sarjoughian, Hessam, 2012. "Looking for the future in the past: Long-term change in socioecological systems," Ecological Modelling, Elsevier, vol. 241(C), pages 42-53.
    17. Iris Lorscheid & Bernd-Oliver Heine & Matthias Meyer, 2012. "Opening the ‘black box’ of simulations: increased transparency and effective communication through the systematic design of experiments," Computational and Mathematical Organization Theory, Springer, vol. 18(1), pages 22-62, March.
    18. Balzer, Wolfgang & Sander, Jorg, 1999. "Towards the qualitative, plan-based simulation of international crises," European Journal of Operational Research, Elsevier, vol. 116(3), pages 461-476, August.
    19. Chion, Clément & Lamontagne, P. & Turgeon, S. & Parrott, L. & Landry, J.-A. & Marceau, D.J. & Martins, C.C.A. & Michaud, R. & Ménard, N. & Cantin, G. & Dionne, S., 2011. "Eliciting cognitive processes underlying patterns of human–wildlife interactions for agent-based modelling," Ecological Modelling, Elsevier, vol. 222(14), pages 2213-2226.
    20. Kamila Štekerová & Josef Zelenka & Milan Kořínek, 2022. "Agent-Based Modelling in Visitor Management of Protected Areas," Sustainability, MDPI, vol. 14(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2760-2768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.