IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v461y2021ics0304380021003239.html
   My bibliography  Save this article

Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach

Author

Listed:
  • Haider, Saira M.
  • Benscoter, Allison M.
  • Pearlstine, Leonard
  • D'Acunto, Laura E.
  • Romañach, Stephanie S.

Abstract

The Florida Everglades is a vast and iconic wetland ecosystem in the southern United States that has undergone dramatic changes from habitat degradation, development encroachment, and water impoundment. Starting in the past few decades, large restoration projects have been undertaken to restore the landscape, including improving conditions for threatened and imperiled taxa. One focus of restoration has been the marl prairie ecosystem, where the federally endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis; CSSS) resides. The CSSS is endemic to the Everglades where populations have been steadily declining, signaling the importance of decision support tools for natural resource managers for evaluating water management and restoration scenarios. Here we developed an ensemble logistic regression, combining a frequentist and Bayesian approach, to model CSSS presence and measure how environmental factors such as hydrometrics, fire occurrence, and vegetation structure impact CSSS habitat suitability. This is the first analysis to quantitatively assess the interdependent relationships between a broad range of environmental factors and CSSS presence across the landscape. Our results show that the probability of CSSS presence was highest in areas with dry conditions, hydroperiods between 80 and 120 days, percentages of canopy cover and woody vegetation less than 10%, and more than six years post-fire where 75% or more of the area was burned. Because the frequentist and Bayesian models had nearly identical spatial outputs with the Bayesian model having slightly higher validation metrics, we used the Bayesian approach as our final model (EverSparrow). The results from our analysis can provide a valuable decision support tool as natural resource managers work to restore the Everglades landscape.

Suggested Citation

  • Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
  • Handle: RePEc:eee:ecomod:v:461:y:2021:i:c:s0304380021003239
    DOI: 10.1016/j.ecolmodel.2021.109774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grolemund, Garrett & Wickham, Hadley, 2011. "Dates and Times Made Easy with lubridate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i03).
    2. Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).
    3. Wickham, Hadley, 2007. "Reshaping Data with the reshape Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i12).
    4. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    5. Fern, Rachel R. & Morrison, Michael L. & Wang, Hsiao-Hsuan & Grant, William E. & Campbell, Tyler A., 2019. "Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    6. Tjur, Tue, 2009. "Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination," The American Statistician, American Statistical Association, vol. 63(4), pages 366-372.
    7. Pierre Ploton & Frédéric Mortier & Maxime Réjou-Méchain & Nicolas Barbier & Nicolas Picard & Vivien Rossi & Carsten Dormann & Guillaume Cornu & Gaëlle Viennois & Nicolas Bayol & Alexei Lyapustin & Syl, 2020. "Spatial validation reveals poor predictive performance of large-scale ecological mapping models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
    2. Kayla A. Cotterman & Anthony D. Kendall & Bruno Basso & David W. Hyndman, 2018. "Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer," Climatic Change, Springer, vol. 146(1), pages 187-200, January.
    3. Ingo Geishecker & Philipp J. H. Schröder & Allan S⊘rensen, 2019. "One‐off export events," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(1), pages 93-131, February.
    4. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    5. Laha, A. K. & Putatunda, Sayan, 2017. "Travel Time Prediction for Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    7. Fraccaroli, Nicolò & Giovannini, Alessandro & Jamet, Jean-François & Persson, Eric, 2022. "Ideology and monetary policy. The role of political parties’ stances in the European Central Bank’s parliamentary hearings," European Journal of Political Economy, Elsevier, vol. 74(C).
    8. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    9. Michael A Ruderman & Deirdra F Wilson & Savanna Reid, 2015. "Does Prison Crowding Predict Higher Rates of Substance Use Related Parole Violations? A Recurrent Events Multi-Level Survival Analysis," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
    10. Julio Cesar Alonso Cifuentes & Jaime Andres Carabali, 2019. "Breve Tuturial para visualizar y Calcular Métricas de Redes (grafos) en R (para Económisas)," Icesi Economics Lecture Notes 18170, Universidad Icesi.
    11. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    12. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
    14. Laurion, Henry, 2020. "Implications of Non-GAAP earnings for real activities and accounting choices," Journal of Accounting and Economics, Elsevier, vol. 70(1).
    15. Laura H. Antão & Benjamin Weigel & Giovanni Strona & Maria Hällfors & Elina Kaarlejärvi & Tad Dallas & Øystein H. Opedal & Janne Heliölä & Heikki Henttonen & Otso Huitu & Erkki Korpimäki & Mikko Kuuss, 2022. "Climate change reshuffles northern species within their niches," Nature Climate Change, Nature, vol. 12(6), pages 587-592, June.
    16. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    17. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Franziska Disslbacher & Julia Hofmann, 2021. "Einstellungen zum Wohlfahrtsstaat und dessen Finanzierung in Österreich," Wirtschaft und Gesellschaft - WuG, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik, vol. 47(3), pages 329-360.
    19. Loke Schmalensee & Pauline Caillault & Katrín Hulda Gunnarsdóttir & Karl Gotthard & Philipp Lehmann, 2023. "Seasonal specialization drives divergent population dynamics in two closely related butterflies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:461:y:2021:i:c:s0304380021003239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.