IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v385y2018icp124-132.html
   My bibliography  Save this article

Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions

Author

Listed:
  • Fois, Mauro
  • Cuena-Lombraña, Alba
  • Fenu, Giuseppe
  • Bacchetta, Gianluigi

Abstract

Among specific applications of species distribution models (SDMs), the use of SDMs probabilistic maps for guiding field surveys is increasingly applied. This approach is particularly used for poorly known and/or cryptic species in order to better assess their distribution. One of the most interesting aspects of these applications is that predictions could be clearly validated by real data, subsequently obtained in the field. Despite this important difference from other applications, to our knowledge, the efficiency of different algorithms, metrics for model evaluation and algorithm-specific settings have not yet been sufficiently investigated.

Suggested Citation

  • Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
  • Handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:124-132
    DOI: 10.1016/j.ecolmodel.2018.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001830259X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher J. Raxworthy & Enrique Martinez-Meyer & Ned Horning & Ronald A. Nussbaum & Gregory E. Schneider & Miguel A. Ortega-Huerta & A. Townsend Peterson, 2003. "Predicting distributions of known and unknown reptile species in Madagascar," Nature, Nature, vol. 426(6968), pages 837-841, December.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    4. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    6. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    7. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    8. Virgili, Auriane & Racine, Mélanie & Authier, Matthieu & Monestiez, Pascal & Ridoux, Vincent, 2017. "Comparison of habitat models for scarcely detected species," Ecological Modelling, Elsevier, vol. 346(C), pages 88-98.
    9. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    10. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    11. Richard Grenyer & C. David L. Orme & Sarah F. Jackson & Gavin H. Thomas & Richard G. Davies & T. Jonathan Davies & Kate E. Jones & Valerie A. Olson & Robert S. Ridgely & Pamela C. Rasmussen & Tzung-Su, 2006. "Global distribution and conservation of rare and threatened vertebrates," Nature, Nature, vol. 444(7115), pages 93-96, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bazzato, Erika & Rosati, Leonardo & Canu, Simona & Fiori, Michele & Farris, Emmanuele & Marignani, Michela, 2021. "High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot," Ecological Modelling, Elsevier, vol. 441(C).
    2. Antonio J. Mendoza-Fernández & Fabián Martínez-Hernández & Esteban Salmerón-Sánchez & Francisco J. Pérez-García & Blas Teruel & María E. Merlo & Juan F. Mota, 2020. "The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios," Land, MDPI, vol. 10(1), pages 1-15, December.
    3. Cushman, S.A. & Kilshaw, K. & Campbell, R.D. & Kaszta, Z. & Gaywood, M. & Macdonald, D.W., 2024. "Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling," Ecological Modelling, Elsevier, vol. 492(C).
    4. Somodi, Imelda & Bede-Fazekas, Ákos & Botta-Dukát, Zoltán & Molnár, Zsolt, 2024. "Confidence and consistency in discrimination: A new family of evaluation metrics for potential distribution models," Ecological Modelling, Elsevier, vol. 491(C).
    5. Ruijie Huang & Chenchen Wu & Hao Lu & Xuemei Wu & Baoyu Zhao, 2024. "Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change," Agriculture, MDPI, vol. 14(6), pages 1-13, May.
    6. Yibo Xu & Xiaohuang Liu & Lianrong Zhao & Jiufen Liu & Xiaofeng Zhao & Hongyu Li & Chao Wang & Honghui Zhao & Ran Wang & Xinping Luo & Liyuan Xing, 2024. "Prediction of Potential Suitability Areas for Ephedra sinica in the Five Northwestern Provinces of China Under Climate Change," Agriculture, MDPI, vol. 14(10), pages 1-18, October.
    7. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    8. Dawei Liu & Chunping Xie & Chi Yung Jim & Yanjun Liu & Senlin Hou, 2023. "Predicting the Potential Distribution of the Alien Invasive Alligator Gar Atractosteus spatula in China," Sustainability, MDPI, vol. 15(8), pages 1-10, April.
    9. Xavier Barber & David Conesa & Antonio López-Quílez & Joaquín Martínez-Minaya & Iosu Paradinas & Maria Grazia Pennino, 2021. "Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach," Mathematics, MDPI, vol. 9(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    2. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    3. Silva, Daniel P. & Gonzalez, Victor H. & Melo, Gabriel A.R. & Lucia, Mariano & Alvarez, Leopoldo J. & De Marco, Paulo, 2014. "Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America," Ecological Modelling, Elsevier, vol. 273(C), pages 200-209.
    4. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    5. Giovanelli, João G.R. & de Siqueira, Marinez Ferreira & Haddad, Célio F.B. & Alexandrino, João, 2010. "Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods," Ecological Modelling, Elsevier, vol. 221(2), pages 215-224.
    6. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    7. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    8. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    9. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    10. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    11. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    12. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    13. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    14. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    15. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    16. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    17. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    18. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    19. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.
    20. Mark Christensen, 2007. "What We Might Know (But Aren't Sure) About Public-Sector Accrual Accounting," Australian Accounting Review, CPA Australia, vol. 17(41), pages 51-65, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:124-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.