IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0100957.html
   My bibliography  Save this article

The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz

Author

Listed:
  • Carlos Yañez-Arenas
  • A Townsend Peterson
  • Pierre Mokondoko
  • Octavio Rojas-Soto
  • Enrique Martínez-Meyer

Abstract

Background: Many authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico. Methodology/Principal Findings: Ecological niche modeling (ENM) was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC); this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence. Conclusions/Significance: Our results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low).

Suggested Citation

  • Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0100957
    DOI: 10.1371/journal.pone.0100957
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100957
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0100957&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0100957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Hansson & Steven Cuadra & Anna Oudin & Kim de Jong & Emilie Stroh & Kjell Torén & Maria Albin, 2010. "Mapping Snakebite Epidemiology in Nicaragua – Pitfalls and Possible Solutions," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(11), pages 1-9, November.
    2. Christopher J. Raxworthy & Enrique Martinez-Meyer & Ned Horning & Ronald A. Nussbaum & Gregory E. Schneider & Miguel A. Ortega-Huerta & A. Townsend Peterson, 2003. "Predicting distributions of known and unknown reptile species in Madagascar," Nature, Nature, vol. 426(6968), pages 837-841, December.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    4. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    5. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    6. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    8. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    9. Robert A Harrison & Adam Hargreaves & Simon C Wagstaff & Brian Faragher & David G Lalloo, 2009. "Snake Envenoming: A Disease of Poverty," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 3(12), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina Ureta & Carlos Martorell & Ángela P Cuervo-Robayo & María C Mandujano & Enrique Martínez-Meyer, 2018. "Inferring space from time: On the relationship between demography and environmental suitability in the desert plant O. rastrera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-20, August.
    2. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    3. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    4. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    5. Daniel Zacarias & Rafael Loyola, 2019. "Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique," Climatic Change, Springer, vol. 152(1), pages 195-207, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    2. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    3. Silva, Daniel P. & Gonzalez, Victor H. & Melo, Gabriel A.R. & Lucia, Mariano & Alvarez, Leopoldo J. & De Marco, Paulo, 2014. "Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America," Ecological Modelling, Elsevier, vol. 273(C), pages 200-209.
    4. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    5. Singh, Aditya & Kushwaha, S.P.S., 2011. "Refining logistic regression models for wildlife habitat suitability modeling—A case study with muntjak and goral in the Central Himalayas, India," Ecological Modelling, Elsevier, vol. 222(8), pages 1354-1366.
    6. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    7. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    8. Giovanelli, João G.R. & de Siqueira, Marinez Ferreira & Haddad, Célio F.B. & Alexandrino, João, 2010. "Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods," Ecological Modelling, Elsevier, vol. 221(2), pages 215-224.
    9. Giannini, T.C. & Lira-Saade, R. & Ayala, R. & Saraiva, A.M. & Alves-dos-Santos, I., 2011. "Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species," Ecological Modelling, Elsevier, vol. 222(12), pages 2011-2018.
    10. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    11. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    12. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    13. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    14. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    15. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    16. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    17. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    18. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    19. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    20. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.