IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v491y2024ics0304380024000553.html
   My bibliography  Save this article

Confidence and consistency in discrimination: A new family of evaluation metrics for potential distribution models

Author

Listed:
  • Somodi, Imelda
  • Bede-Fazekas, Ákos
  • Botta-Dukát, Zoltán
  • Molnár, Zsolt

Abstract

Potential distribution models (PDMs) are widely applied to understand and predict biogeographic patterns. PDM evaluation, however, presents major challenges, including (1) matches of predictions with observed absences and presences being treated similarly and (2) treatment of predicted presences falling outside the observations as errors, while a major motivation of PDMs is to identify such locations. Our aim was to construct a family of model performance metrics to measure the reliability and transferability of PDMs while providing solutions to the problems mentioned above.

Suggested Citation

  • Somodi, Imelda & Bede-Fazekas, Ákos & Botta-Dukát, Zoltán & Molnár, Zsolt, 2024. "Confidence and consistency in discrimination: A new family of evaluation metrics for potential distribution models," Ecological Modelling, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000553
    DOI: 10.1016/j.ecolmodel.2024.110667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ohlmann, Marc & Matias, Catherine & Poggiato, Giovanni & Dray, Stéphane & Thuiller, Wilfried & Miele, Vincent, 2023. "Quantifying the overall effect of biotic interactions on species distributions along environmental gradients," Ecological Modelling, Elsevier, vol. 483(C).
    2. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    3. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    4. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    5. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    6. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).
    7. Leblois, Antoine & Damette, Olivier & Wolfersberger, Julien, 2017. "What has Driven Deforestation in Developing Countries Since the 2000s? Evidence from New Remote-Sensing Data," World Development, Elsevier, vol. 92(C), pages 82-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    2. Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
    3. Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Daniel Yoo & Gillian Divard & Marc Raynaud & Aaron Cohen & Tom D. Mone & John Thomas Rosenthal & Andrew J. Bentall & Mark D. Stegall & Maarten Naesens & Huanxi Zhang & Changxi Wang & Juliette Gueguen , 2024. "A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
    6. Rachel Sippy & Daniel F Farrell & Daniel A Lichtenstein & Ryan Nightingale & Megan A Harris & Joseph Toth & Paris Hantztidiamantis & Nicholas Usher & Cinthya Cueva Aponte & Julio Barzallo Aguilar & An, 2020. "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(2), pages 1-20, February.
    7. Miten Mistry & Dimitrios Letsios & Gerhard Krennrich & Robert M. Lee & Ruth Misener, 2021. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1103-1119, July.
    8. Mehmet Güney Celbiş, 2021. "A machine learning approach to rural entrepreneurship," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 1079-1104, August.
    9. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    10. Magboul M. Sulieman & Fuat Kaya & Mohammed A. Elsheikh & Levent Başayiğit & Rosa Francaviglia, 2023. "Application of Machine Learning Algorithms for Digital Mapping of Soil Salinity Levels and Assessing Their Spatial Transferability in Arid Regions," Land, MDPI, vol. 12(9), pages 1-22, August.
    11. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    12. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    13. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    14. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Skutsch, Margaret & Turnhout, Esther, 2020. "REDD+: If communities are the solution, what is the problem?," World Development, Elsevier, vol. 130(C).
    16. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    18. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    19. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    20. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.