IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v441y2021ics0304380020304208.html
   My bibliography  Save this article

High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot

Author

Listed:
  • Bazzato, Erika
  • Rosati, Leonardo
  • Canu, Simona
  • Fiori, Michele
  • Farris, Emmanuele
  • Marignani, Michela

Abstract

Understanding the effects of climate on biodiversity and its different levels of response to climatic variation is important for addressing conservation-based questions: the use of bioclimatic variables and species modelling tools is common in environmental, agricultural and biological sciences. Unfortunately, most of the ecological local studies are limited to the use of global data with coarse spatial resolutions, while fine‐grain climate data are necessary to capture environmental variability and perform reliable modelling. We propose a high-resolution dataset (40 m grid) of the suite of original coarse-grain bioclimatic variables proposed by WorldClim 2 for the island of Sardinia (Italy); variations amongst our dataset and WorldClim 2 were calculated and mapped to show the spatial distribution of differences between all pairs of variables.

Suggested Citation

  • Bazzato, Erika & Rosati, Leonardo & Canu, Simona & Fiori, Michele & Farris, Emmanuele & Marignani, Michela, 2021. "High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot," Ecological Modelling, Elsevier, vol. 441(C).
  • Handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304208
    DOI: 10.1016/j.ecolmodel.2020.109354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurizio Marchi & Iztok Sinjur & Michele Bozzano & Marjana Westergren, 2019. "Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    2. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    3. Di Febbraro, Mirko & D’Amen, Manuela & Raia, Pasquale & De Rosa, Davide & Loy, Anna & Guisan, Antoine, 2018. "Using macroecological constraints on spatial biodiversity predictions under climate change: the modelling method matters," Ecological Modelling, Elsevier, vol. 390(C), pages 79-87.
    4. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    5. Simona Canu & Leonardo Rosati & Michele Fiori & Andrea Motroni & Rossella Filigheddu & Emmanuele Farris, 2015. "Bioclimate map of Sardinia (Italy)," Journal of Maps, Taylor & Francis Journals, vol. 11(5), pages 711-718, October.
    6. Simone Pesaresi & Diana Galdenzi & Edoardo Biondi & Simona Casavecchia, 2014. "Bioclimate of Italy: application of the worldwide bioclimatic classification system," Journal of Maps, Taylor & Francis Journals, vol. 10(4), pages 538-553, October.
    7. Simone Pesaresi & Edoardo Biondi & Simona Casavecchia, 2017. "Bioclimates of Italy," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 955-960, November.
    8. Mauro Fois & Gianluigi Bacchetta & Donatella Cogoni & Giuseppe Fenu, 2018. "Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: a nice and complex strategy in its raw state?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 332-347, January.
    9. L. Carmignani & G. Oggiano & A. Funedda & P. Conti & S. Pasci, 2016. "The geological map of Sardinia (Italy) at 1:250,000 scale," Journal of Maps, Taylor & Francis Journals, vol. 12(5), pages 826-835, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    2. Maria Luisa Lopez Fernandez & Dauren Zhumabayev & Ricardo Marco Garcia & Kanat Baigarin & Maria Soledad Lopez Fernandez & Saken Baisholanov, 2020. "Assessment of bioclimatic change in Kazakhstan, end 20th—middle 21st centuries, according to the PRECIS prediction," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-37, October.
    3. De Cubber, Lola & Trenkel, Verena M. & Diez, Guzman & Gil-Herrera, Juan & Novoa Pabon, Ana Maria & Eme, David & Lorance, Pascal, 2023. "Robust identification of potential habitats of a rare demersal species (blackspot seabream) in the Northeast Atlantic," Ecological Modelling, Elsevier, vol. 477(C).
    4. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    6. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    7. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Gianmarco Tavilla & Agostino Sorgonà & Ana Cano-Ortiz & Ricardo Quinto Canas & Giovanni Spampinato, 2023. "Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Land, MDPI, vol. 12(1), pages 1-21, January.
    8. Pietro Salvaneschi & Antonio Pica & Ciro Apollonio & Teodoro Andrisano & Massimo Pecci & Andrea Petroselli & Bartolomeo Schirone, 2024. "Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus," Land, MDPI, vol. 13(8), pages 1-16, August.
    9. Yingxiao Zhang & Allison L. Steiner, 2022. "Projected climate-driven changes in pollen emission season length and magnitude over the continental United States," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Carla Ippoliti & Luca Candeloro & Marius Gilbert & Maria Goffredo & Giuseppe Mancini & Gabriele Curci & Serena Falasca & Susanna Tora & Alessio Di Lorenzo & Michela Quaglia & Annamaria Conte, 2019. "Defining ecological regions in Italy based on a multivariate clustering approach: A first step towards a targeted vector borne disease surveillance," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    11. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Agostino Sorgonà & Giovanni Spampinato, 2022. "Analysis of the Population Structure and Dynamic of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    12. Xavier Barber & David Conesa & Antonio López-Quílez & Javier Morales, 2019. "Multivariate Bioclimatic Indices Modelling: A Coregionalised Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 225-244, June.
    13. Tim Drissen & Christopher Faust & Julia T. Treitler & Robin Stadtmann & Stefan Zerbe & Jasmin Mantilla-Contreras, 2022. "National Park or Cultural Landscape Preservation? What the Soil Seed Bank Reveals for Plant Diversity Conservation," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    14. Sabrina Lai & Federica Leone & Corrado Zoppi, 2020. "Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    15. Antonio J. Mendoza-Fernández & Fabián Martínez-Hernández & Esteban Salmerón-Sánchez & Francisco J. Pérez-García & Blas Teruel & María E. Merlo & Juan F. Mota, 2020. "The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios," Land, MDPI, vol. 10(1), pages 1-15, December.
    16. Mateo, Rubén G. & Arellano, Gabriel & Gómez-Rubio, Virgilio & Tello, J. Sebastián & Fuentes, Alfredo F. & Cayola, Leslie & Loza, M. Isabel & Cala, Victoria & Macía, Manuel J., 2022. "Insights on biodiversity drivers to predict species richness in tropical forests at the local scale," Ecological Modelling, Elsevier, vol. 473(C).
    17. Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.
    18. Maria Carla de Francesco & Francesco Pio Tozzi & Gabriella Buffa & Edy Fantinato & Michele Innangi & Angela Stanisci, 2022. "Identifying Critical Thresholds in the Impacts of Invasive Alien Plants and Dune Paths on Native Coastal Dune Vegetation," Land, MDPI, vol. 12(1), pages 1-16, December.
    19. Giulia Caneva & Simone Langone & Flavia Bartoli & Adele Cecchini & Carlo Meneghini, 2021. "Vegetation Cover and Tumuli’s Shape as Affecting Factors of Microclimate and Biodeterioration Risk for the Conservation of Etruscan Tombs (Tarquinia, Italy)," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    20. Dawei Liu & Chunping Xie & Chi Yung Jim & Yanjun Liu & Senlin Hou, 2023. "Predicting the Potential Distribution of the Alien Invasive Alligator Gar Atractosteus spatula in China," Sustainability, MDPI, vol. 15(8), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.