IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp200-209.html
   My bibliography  Save this article

Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America

Author

Listed:
  • Silva, Daniel P.
  • Gonzalez, Victor H.
  • Melo, Gabriel A.R.
  • Lucia, Mariano
  • Alvarez, Leopoldo J.
  • De Marco, Paulo

Abstract

The wood-boring bee Lithurgus huberi Ducke (Apidae: Megachilinae: Lithurgini) is arguably an exotic species to South America. This solitary bee is the only representative in the Western Hemisphere of the Old World genus Lithurgus, and likely a conspecific with the Indo-Australian species Lithurgus atratus. L. huberi appears to have reached the continent at least 100 years ago, when it was discovered and described. Because this species seems to be oligolectic on pollen of Convolvulaceae flowers in South America, we attempted to integrate this biotic interaction (plant–bee relationships) to our species distribution model (SDM) procedures to predict its potential distribution in South America. The modeled distribution of seven L. huberi's host plant species did not improve the algorithms’ ability to predict its distribution, but it produced constrained ranges. These results suggest that our biotic variables are not independent of the abiotic variables used (mostly related to climate). We employed five modeling algorithms, Envelope Score, GARP, Mahalanobis Distance, Support Vector Machines, and MaxEnt, but only the former two showed a good performance when predicting the occurrence of both, the host plant species and L. huberi. Our results indicate that this exotic pollinator is mainly distributed in eastern, northeastern, central, and southwestern South America, with few suitable areas in the Amazon region. We also highlight suitable areas for future surveys and present new occurrence records.

Suggested Citation

  • Silva, Daniel P. & Gonzalez, Victor H. & Melo, Gabriel A.R. & Lucia, Mariano & Alvarez, Leopoldo J. & De Marco, Paulo, 2014. "Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America," Ecological Modelling, Elsevier, vol. 273(C), pages 200-209.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:200-209
    DOI: 10.1016/j.ecolmodel.2013.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher J. Raxworthy & Enrique Martinez-Meyer & Ned Horning & Ronald A. Nussbaum & Gregory E. Schneider & Miguel A. Ortega-Huerta & A. Townsend Peterson, 2003. "Predicting distributions of known and unknown reptile species in Madagascar," Nature, Nature, vol. 426(6968), pages 837-841, December.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    3. Giannini, T.C. & Pinto, C.E. & Acosta, A.L. & Taniguchi, M. & Saraiva, A.M. & Alves-dos-Santos, I., 2013. "Interactions at large spatial scale: The case of Centris bees and floral oil producing plants in South America," Ecological Modelling, Elsevier, vol. 258(C), pages 74-81.
    4. Giannini, T.C. & Lira-Saade, R. & Ayala, R. & Saraiva, A.M. & Alves-dos-Santos, I., 2011. "Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species," Ecological Modelling, Elsevier, vol. 222(12), pages 2011-2018.
    5. González-Salazar, Constantino & Stephens, Christopher R. & Marquet, Pablo A., 2013. "Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions," Ecological Modelling, Elsevier, vol. 248(C), pages 57-70.
    6. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    8. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    9. Pimentel, David & Zuniga, Rodolfo & Morrison, Doug, 2005. "Update on the environmental and economic costs associated with alien-invasive species in the United States," Ecological Economics, Elsevier, vol. 52(3), pages 273-288, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    2. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    3. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    4. Giovanelli, João G.R. & de Siqueira, Marinez Ferreira & Haddad, Célio F.B. & Alexandrino, João, 2010. "Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods," Ecological Modelling, Elsevier, vol. 221(2), pages 215-224.
    5. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    6. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    7. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    8. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    9. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    10. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    11. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    12. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    13. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    14. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    15. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    16. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    17. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    18. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    19. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.
    20. Mark Christensen, 2007. "What We Might Know (But Aren't Sure) About Public-Sector Accrual Accounting," Australian Accounting Review, CPA Australia, vol. 17(41), pages 51-65, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:200-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.