IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v492y2024ics0304380024000796.html
   My bibliography  Save this article

Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling

Author

Listed:
  • Cushman, S.A.
  • Kilshaw, K.
  • Campbell, R.D.
  • Kaszta, Z.
  • Gaywood, M.
  • Macdonald, D.W.

Abstract

Species distribution modeling has emerged as a foundational method to predict occurrence and suitability of species in relation to environmental variables to advance ecological understanding and guide conservation planning. Recent research, however, has shown that species-environmental relationships and habitat model predictions are often nonstationary in space, time and ecological context. This calls into question modeling approaches that assume a global, stationary ecological realized niche and use predictive modeling to describe it. This paper explores this issue by comparing the performance of predictive models for wildcat hybrid occurrence based on (1) global pooled data across individuals, (2) geographically weighted aggregation of individual models, (3) ecologically weighted aggregation of individual models, and (4) combinations of global, geographical and ecological weighting. Our study system included GPS telemetry data from 14 individual wildcat hybrids across Scotland. We developed predictive models both using Generalized Linear Models (GLM) and Random Forest machine learning to compare the performance of these differing algorithms and how they compare in stationary and nonstationary analyses. We validated the predicted models in four different ways. First, we used independent hold-out data from the 14 collared wildcat hybrids. Second, we used data from 8 additional GPS collared wildcat hybrids from a previous study that were not included in the training sample. Third, we used sightings data sent in by the public and researchers and validated by expert opinion. Fourth, we used data collected by camera trap surveys between 2012 – 2021 from various sources to produce a combined camera trap dataset showing where wildcats and wildcat hybrids had been detected. Our results show that validation using hold-out data from the individuals used to train the model provides highly biased assessment of true model performance in other locations, with Random Forest in particular appearing to perform exceptionally (and inaccurately) well when validated by data from the same individuals used to train the models. Very different results were obtained when the models were validated using independent data from the three other sources. Each of these three independent validation data sets gave a different result in terms of the best overall model. The average of independent validation across these three validation datasets suggested that the best overall model produced for potential wildcat occurrence and habitat suitability was obtained by an ensemble average of the global Generalized Linear Model (GLM) and Random Forest models with the ecologically weighted GLM and Random Forest models. This suggests that the debate over whether which of GLM vs machine learning approaches is superior or whether global vs aggregated nonstationary modeling is superior may be a false choice. The results presented here show that the best prediction applies a combination of all of these approaches in an ensemble modeling framework.

Suggested Citation

  • Cushman, S.A. & Kilshaw, K. & Campbell, R.D. & Kaszta, Z. & Gaywood, M. & Macdonald, D.W., 2024. "Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling," Ecological Modelling, Elsevier, vol. 492(C).
  • Handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024000796
    DOI: 10.1016/j.ecolmodel.2024.110691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barber-O'Malley, Betsy & Lassalle, Géraldine & Chust, Guillem & Diaz, Estibaliz & O'Malley, Andrew & Paradinas Blázquez, César & Pórtoles Marquina, Javier & Lambert, Patrick, 2022. "HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios," Ecological Modelling, Elsevier, vol. 470(C).
    2. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    3. Freeman, Elizabeth A. & Moisen, Gretchen, 2008. "PresenceAbsence: An R Package for Presence Absence Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i11).
    4. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    5. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    6. Citores, L. & Ibaibarriaga, L. & Lee, D.-J. & Brewer, M.J. & Santos, M. & Chust, G., 2020. "Modelling species presence–absence in the ecological niche theory framework using shape-constrained generalized additive models," Ecological Modelling, Elsevier, vol. 418(C).
    7. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    2. Robinson, Todd P. & van Klinken, Rieks D. & Metternicht, Graciela, 2010. "Comparison of alternative strategies for invasive species distribution modeling," Ecological Modelling, Elsevier, vol. 221(19), pages 2261-2269.
    3. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).
    4. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    5. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    6. Wongsathit Wongloet & Prach Kongthong & Aingorn Chaiyes & Worapong Singchat & Warong Suksavate & Nattakan Ariyaraphong & Thitipong Panthum & Artem Lisachov & Kitipong Jaisamut & Jumaporn Sonongbua & T, 2023. "Genetic Monitoring of the Last Captive Population of Greater Mouse-Deer on the Thai Mainland and Prediction of Habitat Suitability before Reintroduction," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    7. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    8. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    9. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    10. Liu, Canran & White, Matt & Newell, Graeme & Griffioen, Peter, 2013. "Species distribution modelling for conservation planning in Victoria, Australia," Ecological Modelling, Elsevier, vol. 249(C), pages 68-74.
    11. Vorpahl, Peter & Elsenbeer, Helmut & Märker, Michael & Schröder, Boris, 2012. "How can statistical models help to determine driving factors of landslides?," Ecological Modelling, Elsevier, vol. 239(C), pages 27-39.
    12. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    13. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    14. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    15. Gisel Garza & Crystian Sadiel Venegas Barrera & Jon Dale & José Guadalupe Martínez-Ávalos & Teresa Patricia Feria Arroyo, 2022. "Towards Conserving Crop Wild Relatives along the Texas–Mexico Border: The Case of Manihot walkerae," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    16. Götz Schroth & Peter Läderach & Armando Isaac Martinez-Valle & Christian Bunn, 2017. "From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 903-927, August.
    17. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    18. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    19. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    20. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024000796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.