IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i4p565-574.html
   My bibliography  Save this article

An evaluation of three statistical methods used to model resource selection

Author

Listed:
  • Baasch, David M.
  • Tyre, Andrew J.
  • Millspaugh, Joshua J.
  • Hygnstrom, Scott E.
  • Vercauteren, Kurt C.

Abstract

The performance of statistical methods for modeling resource selection by animals is difficult to evaluate with field data because true selection patterns are unknown. Simulated data based on a known probability distribution, though, can be used to evaluate statistical methods. Models should estimate true selection patterns if they are to be useful in analyzing and interpreting field data. We used simulation techniques to evaluate the effectiveness of three statistical methods used in modeling resource selection. We generated 25 use locations per animal and included 10, 20, 40, or 80 animals in samples of use locations. To simulate species of different mobility, we generated use locations at four levels according to a known probability distribution across DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska and western Iowa, USA. We either generated 5 random locations per use location or 10,000 random locations (total) within 4 predetermined areas around use locations to determine how the definition of availability and the number of random locations affected results. We analyzed simulated data using discrete choice, logistic-regression, and a maximum entropy method (Maxent). We used a simple linear regression of estimated and known probability distributions and area under receiver operating characteristic curves (AUC) to evaluate the performance of each method. Each statistical method was affected differently by number of animals and random locations used in analyses, level at which selection of resources occurred, and area considered available. Discrete-choice modeling resulted in precise and accurate estimates of the true probability distribution when the area in which use locations were generated was≥the area defined to be available. Logistic-regression models were unbiased and precise when the area in which use locations were generated and the area defined to be available were the same size; the fit of these models improved with increased numbers of random locations. Maxent resulted in unbiased and precise estimates of the known probability distribution when the area in which use locations were generated was small (home-range level) and the area defined to be available was large (study area). Based on AUC analyses, all models estimated the selection distribution better than random chance. Results from AUC analyses, however, often contradicted results of the linear regression method used to evaluate model performance. Discrete-choice modeling was best able to estimate the known selection distribution in our study area regardless of sample size or number of random locations used in the analyses, but we recommend further studies using simulated data over different landscapes and different resource metrics to confirm our results. Our study offers an approach and guidance for others interested in assessing the utility of techniques for modeling resource selection in their study area.

Suggested Citation

  • Baasch, David M. & Tyre, Andrew J. & Millspaugh, Joshua J. & Hygnstrom, Scott E. & Vercauteren, Kurt C., 2010. "An evaluation of three statistical methods used to model resource selection," Ecological Modelling, Elsevier, vol. 221(4), pages 565-574.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:4:p:565-574
    DOI: 10.1016/j.ecolmodel.2009.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009007194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven J Dempsey & Eric M Gese & Bryan M Kluever & Robert C Lonsinger & Lisette P Waits, 2015. "Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
    2. Galbraith, Sara M. & Hall, Troy E. & Tavárez, Héctor S. & Kooistra, Chad M. & Ordoñez, Jenny C. & Bosque-Pérez, Nilsa A., 2017. "Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica," Land Use Policy, Elsevier, vol. 69(C), pages 112-122.
    3. David M Baasch & Patrick D Farrell & Shay Howlin & Aaron T Pearse & Jason M Farnsworth & Chadwin B Smith, 2019. "Whooping crane use of riverine stopover sites," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
    4. Sherrouse, Benson C. & Semmens, Darius J., 2014. "Validating a method for transferring social values of ecosystem services between public lands in the Rocky Mountain region," Ecosystem Services, Elsevier, vol. 8(C), pages 166-177.
    5. Kazumasa Hanaoka, 2018. "New insights on relationships between street crimes and ambient population: Use of hourly population data estimated from mobile phone users’ locations," Environment and Planning B, , vol. 45(2), pages 295-311, March.
    6. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
    7. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    8. Salvador Arenas-Castro & João Gonçalves & Paulo Alves & Domingo Alcaraz-Segura & João P Honrado, 2018. "Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    3. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    4. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    5. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    6. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    7. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    8. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    9. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    10. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    11. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    12. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    13. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    14. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    15. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    16. Hopkins, Robert L. & Burr, Brooks M., 2009. "Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics," Ecological Modelling, Elsevier, vol. 220(17), pages 2024-2034.
    17. Pie, Marcio R. & Meyer, Andreas L.S. & Firkowski, Carina R. & Ribeiro, Luiz F. & Bornschein, Marcos R., 2013. "Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terrarana: Brachycephalidae) in the Brazilian Atlantic Rainforest," Ecological Modelling, Elsevier, vol. 250(C), pages 165-176.
    18. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    19. Yang, Xue-Qing & Kodikara, Gayantha R.L. & Luedeling, Eike & Yang, Xue-Fei & He, Jun & Liu, Pei-gui & Xu, Jian-Chu, 2012. "Looking below the ground: Prediction of Tuber indicum habitat using the Weights of Evidence method," Ecological Modelling, Elsevier, vol. 247(C), pages 27-39.
    20. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:4:p:565-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.