IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138995.html
   My bibliography  Save this article

Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox

Author

Listed:
  • Steven J Dempsey
  • Eric M Gese
  • Bryan M Kluever
  • Robert C Lonsinger
  • Lisette P Waits

Abstract

Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.

Suggested Citation

  • Steven J Dempsey & Eric M Gese & Bryan M Kluever & Robert C Lonsinger & Lisette P Waits, 2015. "Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0138995
    DOI: 10.1371/journal.pone.0138995
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138995
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138995&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baasch, David M. & Tyre, Andrew J. & Millspaugh, Joshua J. & Hygnstrom, Scott E. & Vercauteren, Kurt C., 2010. "An evaluation of three statistical methods used to model resource selection," Ecological Modelling, Elsevier, vol. 221(4), pages 565-574.
    2. Cao, Yong & DeWalt, R. Edward & Robinson, Jason L. & Tweddale, Tari & Hinz, Leon & Pessino, Massimo, 2013. "Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections," Ecological Modelling, Elsevier, vol. 259(C), pages 30-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    2. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    3. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    4. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    5. David M Baasch & Patrick D Farrell & Shay Howlin & Aaron T Pearse & Jason M Farnsworth & Chadwin B Smith, 2019. "Whooping crane use of riverine stopover sites," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
    6. Worthington, Thomas A. & Zhang, Tianjiao & Logue, Daniel R. & Mittelstet, Aaron R. & Brewer, Shannon K., 2016. "Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability," Ecological Modelling, Elsevier, vol. 342(C), pages 1-18.
    7. Galbraith, Sara M. & Hall, Troy E. & Tavárez, Héctor S. & Kooistra, Chad M. & Ordoñez, Jenny C. & Bosque-Pérez, Nilsa A., 2017. "Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica," Land Use Policy, Elsevier, vol. 69(C), pages 112-122.
    8. Salvador Arenas-Castro & João Gonçalves & Paulo Alves & Domingo Alcaraz-Segura & João P Honrado, 2018. "Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-31, June.
    9. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
    10. Kazumasa Hanaoka, 2018. "New insights on relationships between street crimes and ambient population: Use of hourly population data estimated from mobile phone users’ locations," Environment and Planning B, , vol. 45(2), pages 295-311, March.
    11. Sherrouse, Benson C. & Semmens, Darius J., 2014. "Validating a method for transferring social values of ecosystem services between public lands in the Rocky Mountain region," Ecosystem Services, Elsevier, vol. 8(C), pages 166-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.