IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp158-172.html
   My bibliography  Save this article

An empirically parameterized individual based model of animal movement, perception, and memory

Author

Listed:
  • Avgar, Tal
  • Deardon, Rob
  • Fryxell, John M.

Abstract

Our capacity to predict patterns of animal movement behavior is limited by our understanding of the underlying cognitive process. Determining what an animal knows about its environment, and how that information is translated into specific movement behaviors, is a conceptual challenge faced by movement ecologists. The modeling framework presented here is designed to evaluate the likelihood of alternative processes of perception, memory and decision making, based on readily available positional data and environmental metrics. The model is based on a flexible cognitive algorithm that provides the framework for an adaptive movement kernel. This enables a straightforward methodology for estimating key parameters for sensory perception, memory and movement while providing testable predictions of animal resource selection and space use patterns. In addition to describing the model and explaining the underlying logic, we demonstrate its parameterization potential using simulated data and investigate the robustness of its predictions over a wide range of temporal and spatial sampling scales. We show that the model can reproduce descriptive probes of movement paths with little sensitivity to the scale at which these paths were sampled and we discuss the merits of our approach in the context of movement- and cognitive-ecology and evolution.

Suggested Citation

  • Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:158-172
    DOI: 10.1016/j.ecolmodel.2012.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/6334 is not listed on IDEAS
    2. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    3. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    4. Baasch, David M. & Tyre, Andrew J. & Millspaugh, Joshua J. & Hygnstrom, Scott E. & Vercauteren, Kurt C., 2010. "An evaluation of three statistical methods used to model resource selection," Ecological Modelling, Elsevier, vol. 221(4), pages 565-574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lutnesky, Marvin M.F. & Brown, Thomas R., 2015. "Simulation of movement that potentially maximizes assessment, presence, and defense in territorial animals with varying movement strategies," Ecological Modelling, Elsevier, vol. 313(C), pages 50-58.
    2. Riggs, Robert A. & Keane, Robert E. & Cimon, Norm & Cook, Rachel & Holsinger, Lisa & Cook, John & DelCurto, Timothy & Baggett, L.Scott & Justice, Donald & Powell, David & Vavra, Martin & Naylor, Bridg, 2015. "Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system," Ecological Modelling, Elsevier, vol. 296(C), pages 57-78.
    3. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    4. Vergara, Pablo M. & Saura, Santiago & Pérez-Hernández, Christian G. & Soto, Gerardo E., 2015. "Hierarchical spatial decisions in fragmented landscapes: Modeling the foraging movements of woodpeckers," Ecological Modelling, Elsevier, vol. 300(C), pages 114-122.
    5. Chloe Bracis & Eliezer Gurarie & Bram Van Moorter & R Andrew Goodwin, 2015. "Memory Effects on Movement Behavior in Animal Foraging," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    6. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    7. Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
    8. Chimienti, Marianna & Desforges, Jean-Pierre & Beumer, Larissa T. & Nabe-Nielsen, Jacob & van Beest, Floris M. & Schmidt, Niels Martin, 2020. "Energetics as common currency for integrating high resolution activity patterns into dynamic energy budget-individual based models," Ecological Modelling, Elsevier, vol. 434(C).
    9. Kunegel-Lion, Mélodie & Neilson, Eric W. & Mansuy, Nicolas & Goodsman, Devin W., 2022. "Habitat quality does not predict animal population abundance on frequently disturbed landscapes," Ecological Modelling, Elsevier, vol. 469(C).
    10. Bellot, Benoit & Poggi, Sylvain & Baudry, Jacques & Bourhis, Yoann & Parisey, Nicolas, 2018. "Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies," Ecological Modelling, Elsevier, vol. 385(C), pages 12-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    4. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    5. Boura, Georgia & Ferguson, Neil S., 2024. "Incorporating geographic interdependencies into the resilience assessment of multimodal public transport networks," Journal of Transport Geography, Elsevier, vol. 118(C).
    6. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    7. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    8. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    9. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    10. Steven J Dempsey & Eric M Gese & Bryan M Kluever & Robert C Lonsinger & Lisette P Waits, 2015. "Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
    11. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    12. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Nogueira Terra, Talita & Ferreira dos Santos, Rozely, 2012. "Measuring cumulative effects in a fragmented landscape," Ecological Modelling, Elsevier, vol. 228(C), pages 89-95.
    15. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    16. Toon Van de Maele & Bart Dhoedt & Tim Verbelen & Giovanni Pezzulo, 2024. "A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. David M Baasch & Patrick D Farrell & Shay Howlin & Aaron T Pearse & Jason M Farnsworth & Chadwin B Smith, 2019. "Whooping crane use of riverine stopover sites," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
    18. Burdziej Jan, 2019. "Using hexagonal grids and network analysis for spatial accessibility assessment in urban environments – a case study of public amenities in Toruń," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 23(2), pages 99-110, June.
    19. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    20. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:158-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.