IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i8p1119-1130.html
   My bibliography  Save this article

Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests

Author

Listed:
  • Aertsen, Wim
  • Kint, Vincent
  • van Orshoven, Jos
  • Özkan, Kürşad
  • Muys, Bart

Abstract

Forestry science has a long tradition of studying the relationship between stand productivity and abiotic and biotic site characteristics, such as climate, topography, soil and vegetation. Many of the early site quality modelling studies related site index to environmental variables using basic statistical methods such as linear regression. Because most ecological variables show a typical non-linear course and a non-constant variance distribution, a large fraction of the variation remained unexplained by these linear models. More recently, the development of more advanced non-parametric and machine learning methods provided opportunities to overcome these limitations. Nevertheless, these methods also have drawbacks. Due to their increasing complexity they are not only more difficult to implement and interpret, but also more vulnerable to overfitting. Especially in a context of regionalisation, this may prove to be problematic. Although many non-parametric and machine learning methods are increasingly used in applications related to forest site quality assessment, their predictive performance has only been assessed for a limited number of methods and ecosystems.

Suggested Citation

  • Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:8:p:1119-1130
    DOI: 10.1016/j.ecolmodel.2010.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010000463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    3. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    2. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    3. Aleksandr Lebedev & Valery Kuzmichev, 2020. "Verification of two- and three-parameter simple height-diameter models for birch in the European part of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(9), pages 375-382.
    4. Hillary Mugiyo & Vimbayi G. P. Chimonyo & Mbulisi Sibanda & Richard Kunz & Cecilia R. Masemola & Albert T. Modi & Tafadzwanashe Mabhaudhi, 2021. "Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review," Land, MDPI, vol. 10(2), pages 1-24, January.
    5. Kint, V. & Aertsen, W. & Fyllas, N.M. & Trabucco, A. & Janssen, E. & Özkan, K. & Muys, B., 2014. "Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey," Ecological Modelling, Elsevier, vol. 286(C), pages 53-65.
    6. Kitikidou, Kyriaki & Petrou, Petros & Milios, Elias, 2012. "Dominant height growth and site index curves for Calabrian pine (Pinus brutia Ten.) in central Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1323-1329.
    7. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    8. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
    9. Tingyu Zhang & Quan Fu & Hao Wang & Fangfang Liu & Huanyuan Wang & Ling Han, 2022. "Bagging-based machine learning algorithms for landslide susceptibility modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 823-846, January.
    10. Díaz-Yáñez, Olalla & Mola-Yudego, Blas & González-Olabarria, José Ramón, 2019. "Modelling damage occurrence by snow and wind in forest ecosystems," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    11. Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3797-3816, April.
    12. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2012. "Quantifying plasticity in simulation models," Ecological Modelling, Elsevier, vol. 225(C), pages 159-166.
    13. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    14. Huseyin Ozturk & Ersin Namli & Halil Ibrahim Erdal, 2016. "Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better?," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 59-81, June.
    15. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    16. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    17. Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    2. Sobczyk, Eugeniusz J. & Kicki, Jerzy & Sobczyk, Wiktoria & Szuwarzyński, Marek, 2017. "Support of mining investment choice decisions with the use of multi-criteria method," Resources Policy, Elsevier, vol. 51(C), pages 94-99.
    3. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    4. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    5. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    6. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    7. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    8. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    9. Kadriye Burcu Yavuz Kumlu & Şule Tüdeş, 2019. "Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order pr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 999-1018, April.
    10. Virginia Racioppi & Gabriella Marcarelli & Massimo Squillante, 2015. "Modelling a sustainable requalification problem by analytic hierarchy process," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1661-1677, July.
    11. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    12. Elena Carrara & Rebecca Ciavarella & Stefania Boglietti & Martina Carra & Giulio Maternini & Benedetto Barabino, 2021. "Identifying and Selecting Key Sustainable Parameters for the Monitoring of e-Powered Micro Personal Mobility Vehicles. Evidence from Italy," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    13. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    14. Kulisic, Biljana & Dimitriou, Ioannis & Mola-Yudego, Blas, 2021. "From preferences to concerted policy on mandated share for renewable energy in transport," Energy Policy, Elsevier, vol. 155(C).
    15. Dinulescu Ruxandra & Dobrin Cosmin, 2022. "Applying the fuzzy analytical hierarchy process for classifying and prioritizing healthcare quality attributes," Management & Marketing, Sciendo, vol. 17(1), pages 15-40, March.
    16. Pires, Ana & Chang, Ni-Bin & Martinho, Graça, 2011. "An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setúbal Peninsula, Portugal," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 7-21.
    17. Behnoosh Matani & Babak Shirazi & Javad Soltanzadeh, 2019. "F-MaMcDm: Sustainable Green-Based Hydrogen Production Technology Roadmap Using Fuzzy Multi-Aspect Multi-Criteria Decision-Making," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-32, December.
    18. Ahadi, Pedram & Fakhrabadi, Farbod & Pourshaghaghy, Alireza & Kowsary, Farshad, 2023. "Optimal site selection for a solar power plant in Iran via the Analytic Hierarchy Process (AHP)," Renewable Energy, Elsevier, vol. 215(C).
    19. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    20. Sobczyk, Eugeniusz J. & Galica, Dominik & Kopacz, Michał & Sobczyk, Wiktoria, 2022. "Selecting the optimal exploitation option using a digital deposit model and the AHP," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:8:p:1119-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.