IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v211y2008i1p233-240.html
   My bibliography  Save this article

Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis

Author

Listed:
  • Basille, Mathieu
  • Calenge, Clément
  • Marboutin, Éric
  • Andersen, Reidar
  • Gaillard, Jean-Michel

Abstract

We propose here some refinements of the ecological-niche factor analysis (ENFA) to describe precisely one organism’s habitat selection. The ENFA is based on the concept of the ecological niche, and provides a measure of the realised niche within the available space from the computation of two parameters, the marginality and the specialization. By measuring the departure of the ecological niche from the average available habitat, the marginality identifies the preference of the individual, population, or species for specific conditions of the environment among the whole set of possibilities. The specialization appears as a consequence of the narrowness of the niche on some environmental variables. The ENFA is a factorial analysis that extracts one axis of marginality and several axes of specialization. We present here the use of biplots (i.e., the projection of both the pixels of the map and the environmental variables in the subspace extracted by the ENFA) as a way to identify the key-variables for management, assessing which habitat features are of prime importance and should be preserved or reinforced. With the help of this tool, we are now able to describe much more precisely the habitat selection of the organism under focus. In our application to the lynx in the Vosges mountains, based on sightings as well as other indices of lynx presence, we thus underlined a strong avoidance of agricultural areas by the lynx. We also highlighted the relative indifference of the lynx to the proximity of artificial areas and at the opposite, the sensitivity to the proximity of highways. The ENFA provides a suitable way to measure habitat use/selection under a large range of ecological contexts and should be used to define precisely the ecological niche and therefore identify the characteristics searched for by the organism under study.

Suggested Citation

  • Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
  • Handle: RePEc:eee:ecomod:v:211:y:2008:i:1:p:233-240
    DOI: 10.1016/j.ecolmodel.2007.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007004577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Gallego-Álvarez & Mª Galindo-Villardón & Miguel Rodríguez-Rosa, 2015. "Analysis of the Sustainable Society Index Worldwide: A Study from the Biplot Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(1), pages 29-65, January.
    2. Ashcroft, Michael B. & French, Kristine O. & Chisholm, Laurie A., 2011. "An evaluation of environmental factors affecting species distributions," Ecological Modelling, Elsevier, vol. 222(3), pages 524-531.
    3. Ricardo Enrique Hernández-Lambraño & David Rodríguez de la Cruz & José Ángel Sánchez Agudo, 2021. "Effects of the Climate Change on Peripheral Populations of Hydrophytes: A Sensitivity Analysis for European Plant Species Based on Climate Preferences," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    4. Mathieu Basille & Bram Van Moorter & Ivar Herfindal & Jodie Martin & John D C Linnell & John Odden & Reidar Andersen & Jean-Michel Gaillard, 2013. "Selecting Habitat to Survive: The Impact of Road Density on Survival in a Large Carnivore," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.
    5. Pietro Milanesi & Felice Puopolo & Florian Zellweger, 2022. "Landscape Features, Human Disturbance or Prey Availability? What Shapes the Distribution of Large Carnivores in Europe?," Land, MDPI, vol. 11(10), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    3. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    4. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    5. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    6. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    7. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    8. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    9. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    10. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    11. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    12. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    13. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    14. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    15. Hopkins, Robert L. & Burr, Brooks M., 2009. "Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics," Ecological Modelling, Elsevier, vol. 220(17), pages 2024-2034.
    16. Pie, Marcio R. & Meyer, Andreas L.S. & Firkowski, Carina R. & Ribeiro, Luiz F. & Bornschein, Marcos R., 2013. "Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terrarana: Brachycephalidae) in the Brazilian Atlantic Rainforest," Ecological Modelling, Elsevier, vol. 250(C), pages 165-176.
    17. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    18. Yang, Xue-Qing & Kodikara, Gayantha R.L. & Luedeling, Eike & Yang, Xue-Fei & He, Jun & Liu, Pei-gui & Xu, Jian-Chu, 2012. "Looking below the ground: Prediction of Tuber indicum habitat using the Weights of Evidence method," Ecological Modelling, Elsevier, vol. 247(C), pages 27-39.
    19. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    20. Sahragard, H.P. & Chahouki, M.A. Zare, 2015. "An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom province," Ecological Modelling, Elsevier, vol. 309, pages 64-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:211:y:2008:i:1:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.