IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i4p925-934.html
   My bibliography  Save this article

Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach

Author

Listed:
  • Di Traglia, Mario
  • Attorre, Fabio
  • Francesconi, Fabio
  • Valenti, Roberto
  • Vitale, Marcello

Abstract

In this paper is presented a methodological approach which integrates statistic modelling and 2-D cellular automata (CA) in order to describe tree species shifts responding to the climate changes foreseen for Italy in the 21st century. Five Italian tree species populations of Abies alba, Pinus sylvestris, Fagus sylvatica, Acer campestris and Quercus suber and their actual potential distributions (PDs) – represented by Importance Value (IV), have been considered. Environmental and climatic relationships have been modelled through application of a new statistical methodology called extreme discretization, where the PD of a species was considered as a random field. The IV-based PD has been spatialized through a probability function π(A,S), which represented the spatio-temporal relationships between IV values and climatic (A) and geo-morphological (S) variables. For each tree species π=(A,S) has been estimated and inserted as rule in the 2-D cellular automata. The latter, acting by a Moore neighbouring, took in consideration also the suitability map for tree species, which has been obtained by land cover map. Two time frames (2050 and 2080) and two climatic scenarios (A2 and B1) have been considered. Results described a general reduction of the IV values and their distribution for A. alba, P. sylvestris and F. sylvatica, in both climatic scenarios, whereas an increase of IVs and distribution for Q. suber and only a slight increment of distribution for A. campestris was mainly observed under the B1 scenario, but not for the more limiting A2 scenario. Convergent results have been obtained with respect to other simulation systems concerning the shift of tree species responding to different climatic change scenarios but lacking of the description of dynamical paths. Our approach seems natural and practical to describe such phenomena. The transition rules for the CA and the parameters taken into account for the construction of the probabilistic models can be surely improved to obtain a more realistic pattern of tree species shifts. Future efforts should be made to take in account the inter-specific relationships inside the Italian forest ecosystems, in order to also consider the competiveness for resources that exert some effects on the plant distribution both in time and space.

Suggested Citation

  • Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:925-934
    DOI: 10.1016/j.ecolmodel.2010.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. F Wu & C J Webster, 1998. "Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation," Environment and Planning B, , vol. 25(1), pages 103-126, February.
    3. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    4. M Batty, 1998. "Urban Evolution on the Desktop: Simulation with the Use of Extended Cellular Automata," Environment and Planning A, , vol. 30(11), pages 1943-1967, November.
    5. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    6. Wilfried Thuiller, 2007. "Climate change and the ecologist," Nature, Nature, vol. 448(7153), pages 550-552, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitale, Marcello & Lorenzetti, Silvia & Francesconi, Fabio & Attorre, Fabio & Di Traglia, Mario, 2017. "The importance of interspecific competition in the actual and future distributions of plant species assessed by a 2-D grid agent modelling," Ecological Modelling, Elsevier, vol. 360(C), pages 399-409.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Sébastien Nusslé & Kathleen R Matthews & Stephanie M Carlson, 2015. "Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
    3. Platts, Philip J. & McClean, Colin J. & Lovett, Jon C. & Marchant, Rob, 2008. "Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty," Ecological Modelling, Elsevier, vol. 218(1), pages 121-134.
    4. Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.
    5. Meineri, Eric & Skarpaas, Olav & Vandvik, Vigdis, 2012. "Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter?," Ecological Modelling, Elsevier, vol. 231(C), pages 1-10.
    6. Keliang Zhang & Yin Zhang & Diwen Jia & Jun Tao, 2020. "Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    7. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    8. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    9. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    10. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    11. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    12. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    13. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    14. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    15. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    16. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    17. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    18. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    19. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    20. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:925-934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.