Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2019.06.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Jarnevich, Catherine S. & Talbert, Marian & Morisette, Jeffery & Aldridge, Cameron & Brown, Cynthia S. & Kumar, Sunil & Manier, Daniel & Talbert, Colin & Holcombe, Tracy, 2017. "Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection," Ecological Modelling, Elsevier, vol. 363(C), pages 48-56.
- Wieland, Ralf & Kerkow, Antje & Früh, Linus & Kampen, Helge & Walther, Doreen, 2017. "Automated feature selection for a machine learning approach toward modeling a mosquito distribution," Ecological Modelling, Elsevier, vol. 352(C), pages 108-112.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
- Vorpahl, Peter & Elsenbeer, Helmut & Märker, Michael & Schröder, Boris, 2012. "How can statistical models help to determine driving factors of landslides?," Ecological Modelling, Elsevier, vol. 239(C), pages 27-39.
- Srivastava, Vivek & Griess, Verena C. & Padalia, Hitendra, 2018. "Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas," Ecological Modelling, Elsevier, vol. 385(C), pages 35-44.
- Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
- Watanabe, Marcos D.B. & Ortega, Enrique, 2014. "Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change," Ecological Modelling, Elsevier, vol. 271(C), pages 113-131.
- Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
- Baasch, David M. & Tyre, Andrew J. & Millspaugh, Joshua J. & Hygnstrom, Scott E. & Vercauteren, Kurt C., 2010. "An evaluation of three statistical methods used to model resource selection," Ecological Modelling, Elsevier, vol. 221(4), pages 565-574.
- Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
- Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Katarzyna Kopczewska, 2022.
"Spatial machine learning: new opportunities for regional science,"
The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
- Katarzyna Kopczewska, 2021. "Spatial Machine Learning – New Opportunities for Regional Science," Working Papers 2021-16, Faculty of Economic Sciences, University of Warsaw.
- Meyer, Hanna & Reudenbach, Christoph & Wöllauer, Stephan & Nauss, Thomas, 2019. "Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction," Ecological Modelling, Elsevier, vol. 411(C).
- Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
- Vo Thanh, Hung & Zamanyad, Aiyoub & Safaei-Farouji, Majid & Ashraf, Umar & Hemeng, Zhang, 2022. "Application of hybrid artificial intelligent models to predict deliverability of underground natural gas storage sites," Renewable Energy, Elsevier, vol. 200(C), pages 169-184.
- Morakot Worachairungreung & Sarawut Ninsawat & Apichon Witayangkurn & Matthew N. Dailey, 2021. "Identification of Road Traffic Injury Risk Prone Area Using Environmental Factors by Machine Learning Classification in Nonthaburi, Thailand," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
- Zhu Liang & Wei Liu & Weiping Peng & Lingwei Chen & Changming Wang, 2022. "Improved Shallow Landslide Susceptibility Prediction Based on Statistics and Ensemble Learning," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Samir K. Safi & Sheema Gul, 2024. "An Enhanced Tree Ensemble for Classification in the Presence of Extreme Class Imbalance," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
- Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
- Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
- Patrick José Jeetze & Isabelle Weindl & Justin Andrew Johnson & Pasquale Borrelli & Panos Panagos & Edna J. Molina Bacca & Kristine Karstens & Florian Humpenöder & Jan Philipp Dietrich & Sara Minoli &, 2023. "Projected landscape-scale repercussions of global action for climate and biodiversity protection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
- Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Anton M. Potapov & Carlos A. Guerra & Johan Hoogen & Anatoly Babenko & Bruno C. Bellini & Matty P. Berg & Steven L. Chown & Louis Deharveng & Ľubomír Kováč & Natalia A. Kuznetsova & Jean-François Pong, 2023. "Globally invariant metabolism but density-diversity mismatch in springtails," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
- Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Bommert, Andrea & Sun, Xudong & Bischl, Bernd & Rahnenführer, Jörg & Lang, Michel, 2020. "Benchmark for filter methods for feature selection in high-dimensional classification data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Muniain, Peru & Ziel, Florian, 2020. "Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1193-1210.
- Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
- Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
- Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
More about this item
Keywords
Spatial modeling; Machine-learning; Spatial autocorrelation; Hyperparameter tuning; Spatial cross-validation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:109-120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.