IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v167y2022ics0167947321001833.html
   My bibliography  Save this article

Hierarchical Bayesian modeling of spatio-temporal area-interaction processes

Author

Listed:
  • Chen, Jiaxun
  • Micheas, Athanasios C.
  • Holan, Scott H.

Abstract

To model spatial point patterns with discrete time stamps a flexible spatio-temporal area-interaction point process is proposed. In particular, this model is suitable for describing the dependency between point patterns over time, when the new point pattern arises from the previous point pattern. A hierarchical model is also implemented in order to incorporate the underlying evolution process of the model parameters. For parameter estimation, a double Metropolis-Hastings within Gibbs sampler is used. The performance of the estimation algorithm is evaluated through a simulation study. Finally, the point pattern forecasting procedure is demonstrated through a simulation study and an application to United States natural caused wildfire data from 2002 to 2019.

Suggested Citation

  • Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001833
    DOI: 10.1016/j.csda.2021.107349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321001833
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
    2. Sigrunn H. S⊘rbye & Janine B. Illian & Daniel P. Simpson & David Burslem & Håvard Rue, 2019. "Careful prior specification avoids incautious inference for log‐Gaussian Cox point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 543-564, April.
    3. Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
    4. Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
    5. Vinayak Rao & Ryan P. Adams & David D. Dunson, 2017. "Bayesian inference for Matérn repulsive processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 877-897, June.
    6. Jaewoo Park & Murali Haran, 2018. "Bayesian Inference in the Presence of Intractable Normalizing Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1372-1390, July.
    7. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    8. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    9. Athanasios C. Micheas, 2019. "Cox Point Processes: Why One Realisation Is Not Enough," International Statistical Review, International Statistical Institute, vol. 87(2), pages 306-325, August.
    10. A. Baddeley & M. Lieshout, 1995. "Area-interaction point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 601-619, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuo Matsubara & Jeremias Knoblauch & François‐Xavier Briol & Chris J. Oates, 2022. "Robust generalised Bayesian inference for intractable likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 997-1022, July.
    2. Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
    3. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    4. David Dereudre & Frédéric Lavancier & Kateřina Staňková Helisová, 2014. "Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 809-829, September.
    5. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    6. Tang, Jinjun & Zhao, Chuyun & Liu, Fang & Hao, Wei & Gao, Fan, 2022. "Analyzing travel destinations distribution using large-scaled GPS trajectories: A spatio-temporal Log-Gaussian Cox process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    7. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    8. Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
    9. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    10. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    11. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    12. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    13. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    14. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    15. Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
    16. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    17. Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
    18. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    19. Christophe Ange Napoléon Biscio & Frédéric Lavancier, 2017. "Contrast Estimation for Parametric Stationary Determinantal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 204-229, March.
    20. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.