On a class of repulsive mixture models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-020-00726-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jairo Fúquene & Mark Steel & David Rossell, 2019. "On choosing mixture components via non‐local priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(5), pages 809-837, November.
- De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- repec:dau:papers:123456789/4648 is not listed on IDEAS
- Frédéric Lavancier & Jesper Møller & Ege Rubak, 2015. "Determinantal point process models and statistical inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 853-877, September.
- Fangzheng Xie & Yanxun Xu, 2020. "Bayesian Repulsive Gaussian Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 187-203, January.
- Yanxun Xu & Peter Müller & Donatello Telesca, 2016. "Bayesian inference for latent biologic structure with determinantal point processes (DPP)," Biometrics, The International Biometric Society, vol. 72(3), pages 955-964, September.
- Vinayak Rao & Ryan P. Adams & David D. Dunson, 2017. "Bayesian inference for Matérn repulsive processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 877-897, June.
- Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Norets, Andriy & Shimizu, Kenichi, 2024.
"Semiparametric Bayesian estimation of dynamic discrete choice models,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Papers 2202.04339, arXiv.org, revised Aug 2023.
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Working Papers 2022_06, Business School - Economics, University of Glasgow.
- Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- repec:dau:papers:123456789/13437 is not listed on IDEAS
- Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
- Marco, Nicholas & Şentürk, Damla & Jeste, Shafali & DiStefano, Charlotte C. & Dickinson, Abigail & Telesca, Donatello, 2024. "Flexible regularized estimation in high-dimensional mixed membership models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- repec:cte:wsrepe:ws1504 is not listed on IDEAS
- Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
- A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
- Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
- Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
- Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
- Christophe Ange Napoléon Biscio & Frédéric Lavancier, 2017. "Contrast Estimation for Parametric Stationary Determinantal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 204-229, March.
- Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
- Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.
- Hatjispyros, Spyridon J. & Merkatas, Christos & Walker, Stephen G., 2023. "Mixture models with decreasing weights," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
- Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
- Subhroshekhar Ghosh & Soumendu Sundar Mukherjee, 2022. "Learning with latent group sparsity via heat flow dynamics on networks," Papers 2201.08326, arXiv.org.
- Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
- Weining Shen & Subhashis Ghosal, 2017. "Posterior Contraction Rates of Density Derivative Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-354, August.
- Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
More about this item
Keywords
Gibbs measures; Mixture models; Repulsive point processes; Hierarchical modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:2:d:10.1007_s11749-020-00726-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.