IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122002515.html
   My bibliography  Save this article

Analyzing travel destinations distribution using large-scaled GPS trajectories: A spatio-temporal Log-Gaussian Cox process

Author

Listed:
  • Tang, Jinjun
  • Zhao, Chuyun
  • Liu, Fang
  • Hao, Wei
  • Gao, Fan

Abstract

Under the increasingly serious city diseases, it is very important to deeply understand the spatio-temporal correlation between travel destination and urban built environment. The spatio-temporal point process has been widely used in many specific fields to explore the evolution of events. We employ a spatio-temporal Log-Gaussian Cox process model (LGCP) to analyze travel destination, which consists of three different components: a spatial component λ(s), a temporal component μ(t), and a separable log-Gaussian stochastic intensity field exp{Υ(s,t)}, to model and predict the destination. The spatial component and temporal component are modeled by the Poisson log linear regression model combined with covariates of interest separately. Spatial covariates including land use, demographics, travel origins and road network, and temporal covariates including the periodic function, weekdays and weekend variation, are selected as influencing factors to analyze the impact of building environment on travel destinations under different combinations of spatial and temporal covariates. Then, an extensible Markov chain Monte Carlo (MCMC) algorithm is applied to simulate Gaussian random field, and the fitted LGCP model can be used to obtain the prediction distribution of Gaussian random field beyond the last time point of data observation. In the experiment, taxi destination data collected in Shenzhen city May 6 to May 23, 2019 are used to validate modeling performance. The results in experiment shows the space–time positions of destination simulated by LGCP model are very similar to those observed. This study can provide strategy for urban planners and transportation administration to conduct reasonable policy to balance travel demand and public resources.

Suggested Citation

  • Tang, Jinjun & Zhao, Chuyun & Liu, Fang & Hao, Wei & Gao, Fan, 2022. "Analyzing travel destinations distribution using large-scaled GPS trajectories: A spatio-temporal Log-Gaussian Cox process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122002515
    DOI: 10.1016/j.physa.2022.127305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002515
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue Hou & Zhiyuan Deng & Hanke Cui & M. Irfan Uddin, 2021. "Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion," Complexity, Hindawi, vol. 2021, pages 1-14, January.
    2. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Huang, Ying & Xu, Wangtu (Ato), 2021. "Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
    5. Tang, Jinjun & Bi, Wei & Liu, Fang & Zhang, Wenhui, 2021. "Exploring urban travel patterns using density-based clustering with multi-attributes from large-scaled vehicle trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    6. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    7. Lei Zhang & Guoxing Zhang & Zhizheng Liang & Ekene Frank Ozioko, 2018. "Multi-features taxi destination prediction with frequency domain processing," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    8. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    9. Tang, Jinjun & Gao, Fan & Han, Chunyang & Cen, Xuekai & Li, Zhitao, 2021. "Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi," Journal of Transport Geography, Elsevier, vol. 95(C).
    10. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    11. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2013. "lgcp: An R Package for Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i04).
    12. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    13. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    14. Yang Liu & Yanjie Ji & Zhuangbin Shi & Liangpeng Gao, 2018. "The Influence of the Built Environment on School Children’s Metro Ridership: An Exploration Using Geographically Weighted Poisson Regression Models," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    2. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    3. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    4. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    6. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
    7. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    8. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    9. Gao, Fan & Han, Chunyang & Yang, Linchuan & Liang, Jian & He, Xuan & Li, Fan, 2024. "Analyzing spatiotemporal distribution patterns of metro ridership: Comparison between common-class and business-class carriage service," Journal of Transport Geography, Elsevier, vol. 115(C).
    10. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    11. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
    12. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    13. Li, Xiang & Cheng, Zhonghua, 2022. "Does high-speed rail improve urban carbon emission efficiency in China?," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    15. Davies, Tilman M. & Bryant, David, 2013. "On Circulant Embedding for Gaussian Random Fields in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i09).
    16. Bo Wan & Xudan Zhao & Yuhan Sun & Tao Yang, 2023. "Unraveling the Impact of Spatial Configuration on TOD Function Mix Use and Spatial Intensity: An Analysis of 47 Morning Top-Flow Stations in Beijing (2018–2020)," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    17. Yongjun Shen & Qiong Bao & Elke Hermans, 2020. "Applying an Alternative Approach for Assessing Sustainable Road Transport: A Benchmarking Analysis on EU Countries," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    18. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    19. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    20. Huang, Yan & Ma, Liang & Cao, Jason, 2023. "Exploring spatial heterogeneity in the high-speed rail impact on air quality," Journal of Transport Geography, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122002515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.