IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i3p997-1022.html
   My bibliography  Save this article

Robust generalised Bayesian inference for intractable likelihoods

Author

Listed:
  • Takuo Matsubara
  • Jeremias Knoblauch
  • François‐Xavier Briol
  • Chris J. Oates

Abstract

Generalised Bayesian inference updates prior beliefs using a loss function, rather than a likelihood, and can therefore be used to confer robustness against possible mis‐specification of the likelihood. Here we consider generalised Bayesian inference with a Stein discrepancy as a loss function, motivated by applications in which the likelihood contains an intractable normalisation constant. In this context, the Stein discrepancy circumvents evaluation of the normalisation constant and produces generalised posteriors that are either closed form or accessible using the standard Markov chain Monte Carlo. On a theoretical level, we show consistency, asymptotic normality, and bias‐robustness of the generalised posterior, highlighting how these properties are impacted by the choice of Stein discrepancy. Then, we provide numerical experiments on a range of intractable distributions, including applications to kernel‐based exponential family models and non‐Gaussian graphical models.

Suggested Citation

  • Takuo Matsubara & Jeremias Knoblauch & François‐Xavier Briol & Chris J. Oates, 2022. "Robust generalised Bayesian inference for intractable likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 997-1022, July.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:997-1022
    DOI: 10.1111/rssb.12500
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12500
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    3. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.
    4. Abhik Ghosh & Ayanendranath Basu, 2016. "Robust Bayes estimation using the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 413-437, April.
    5. Jaewoo Park & Murali Haran, 2018. "Bayesian Inference in the Presence of Intractable Normalizing Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1372-1390, July.
    6. Jeffrey W. Miller & David B. Dunson, 2019. "Robust Bayesian Inference via Coarsening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1113-1125, July.
    7. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    8. Giles Hooker & Anand Vidyashankar, 2014. "Bayesian model robustness via disparities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 556-584, September.
    9. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    10. Peter J. Diggle, 1990. "A Point Process Modelling Approach to Raised Incidence of a Rare Phenomenon in the Vicinity of a Prespecified Point," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 349-362, May.
    11. David T. Frazier, 2020. "Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach," Papers 2006.14126, arXiv.org.
    12. repec:dau:papers:123456789/5724 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Riabiz & Wilson Ye Chen & Jon Cockayne & Pawel Swietach & Steven A. Niederer & Lester Mackey & Chris. J. Oates, 2022. "Optimal thinning of MCMC output," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1059-1081, September.
    2. Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    2. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    3. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    4. Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
    5. Tsionas, Mike G., 2023. "Joint production in stochastic non-parametric envelopment of data with firm-specific directions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1336-1347.
    6. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    7. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    8. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    10. Fabio Canova & Christian Matthes, 2021. "A Composite Likelihood Approach for Dynamic Structural Models," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2447-2477.
    11. David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Papers 2106.12262, arXiv.org, revised Feb 2022.
    12. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    13. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    14. Yahia Abdel-Aty & Mohamed Kayid & Ghadah Alomani, 2023. "Generalized Bayes Estimation Based on a Joint Type-II Censored Sample from K-Exponential Populations," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    15. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.
    17. Abhik Ghosh, 2020. "Comments on: On active learning methods for manifold data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-37, March.
    18. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    19. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    20. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:997-1022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.