IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v288y2014icp143-154.html
   My bibliography  Save this article

Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry

Author

Listed:
  • Genet, Astrid
  • Grabarnik, Pavel
  • Sekretenko, Olga
  • Pothier, David

Abstract

The spatial structure of complex forest stands results from competitive interactions among trees which is one of the most important ecological processes influencing forest development. The aim of the study is to incorporate in a new class of random point process models a coherent representation of the competition process driving forest stand dynamics to establish a direct link between pattern and ecological processes. The resulting area-saturation model was defined by a set statistic characterised by overlapping discs representing tree interactions. Unlike previous approaches, this new spatial model has the advantage of allowing a straightforward interpretation of its parameters in terms of inter-tree competition. A 60m×60m plot of even-aged Scots pines was used to illustrate the potential of this approach in modelling the spatial structure of a plant community. The social status of each tree was taken into account, leading to a multivariate point pattern exhibiting various spatial properties (regularity, clustering and randomness) at different scales. We considered a hierarchical structure of interactions to account for the fact that competition for light is size-asymmetric. According to the analysis, the generalised area-saturation model has the required flexibility to capture complex spatial tree patterns.

Suggested Citation

  • Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
  • Handle: RePEc:eee:ecomod:v:288:y:2014:i:c:p:143-154
    DOI: 10.1016/j.ecolmodel.2014.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014002701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
    2. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    3. Grabarnik, Pavel & Myllymäki, Mari & Stoyan, Dietrich, 2011. "Correct testing of mark independence for marked point patterns," Ecological Modelling, Elsevier, vol. 222(23), pages 3888-3894.
    4. A. Baddeley & M. Lieshout, 1995. "Area-interaction point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 601-619, December.
    5. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picard, Nicolas, 2021. "The role of spatial competitive interactions between trees in shaping forest patterns," Theoretical Population Biology, Elsevier, vol. 142(C), pages 36-45.
    2. Lister, Andrew J. & Leites, Laura P., 2018. "Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework," Ecological Modelling, Elsevier, vol. 378(C), pages 37-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan N. Kutyavin & Alexei V. Manov, 2022. "Spatial relationships of trees in middle taiga post-pyrogenic pine forest stands in the European North-East of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(6), pages 228-240.
    2. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    4. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    5. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    6. Cronie, Ottmar & Särkkä, Aila, 2011. "Some edge correction methods for marked spatio-temporal point process models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2209-2220, July.
    7. David Dereudre & Frédéric Lavancier & Kateřina Staňková Helisová, 2014. "Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 809-829, September.
    8. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    9. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    10. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    11. Jakub Staněk & Ondřej Šedivý & Viktor Beneš, 2014. "On Random Marked Sets with a Smaller Integer Dimension," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 397-410, June.
    12. Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
    13. Lister, Andrew J. & Leites, Laura P., 2018. "Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework," Ecological Modelling, Elsevier, vol. 378(C), pages 37-45.
    14. Ahmed Ait Ameur & Hichem Elmossaoui & Nadia Oukid, 2024. "New Computer Experiment Designs with Area-Interaction Point Processes," Mathematics, MDPI, vol. 12(15), pages 1-17, July.
    15. Glenna F Nightingale & Kevin N Laland & William Hoppitt & Peter Nightingale, 2015. "Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    16. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    17. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    18. Florent Bonneu & Christine Thomas-Agnan, 2015. "Measuring and Testing Spatial Mass Concentration with Micro-geographic Data," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(3), pages 289-316, September.
    19. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    20. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:288:y:2014:i:c:p:143-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.