IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i1p23-41.html
   My bibliography  Save this article

The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees

Author

Listed:
  • NICOLAS PICARD
  • AVNER BAR‐HEN
  • FRÉDÉRIC MORTIER
  • JOËL CHADŒUF

Abstract

. The spatial pattern of trees in forests often combines different types of structure (regularity, clustering or randomness) at different scales. Taking species or size into account leads to marked patterns. The question addressed is to model such multi‐scale marked patterns using a single process. Within the category of Markov processes, the area‐interaction process has the advantage of being locally stable, whether it is attractive or repulsive. This process was originally defined as a one‐scale non‐marked process. We propose an extension as a multi‐scale marked process. Three examples are presented to show the adequacy of this process to model tree patterns: 1. A pine pattern showing anisotropic regularity and clustering at different scales. 2. A bivariate (adult/juvenile) kimboto pattern in French Guiana, showing regularity for one type, clustering for the other and repulsion between the two. 3. A marked pattern in Gabon where the mark is tree diameter.

Suggested Citation

  • Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:23-41
    DOI: 10.1111/j.1467-9469.2008.00612.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00612.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00612.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregori, P. & van Lieshout, M. N. M. & Mateu, J., 2004. "Mixture formulae for shot noise weighted point processes," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 311-320, May.
    2. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    3. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    4. van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 679-698, November.
    5. A. Baddeley & M. Lieshout, 1995. "Area-interaction point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 601-619, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. David Dereudre & Frédéric Lavancier & Kateřina Staňková Helisová, 2014. "Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 809-829, September.
    3. Genet, Astrid & Grabarnik, Pavel & Sekretenko, Olga & Pothier, David, 2014. "Incorporating the mechanisms underlying inter-tree competition into a random point process model to improve spatial tree pattern analysis in forestry," Ecological Modelling, Elsevier, vol. 288(C), pages 143-154.
    4. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    2. Gregori, P. & van Lieshout, M. N. M. & Mateu, J., 2004. "Mixture formulae for shot noise weighted point processes," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 311-320, May.
    3. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    4. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    5. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    6. Garcia, Nancy L. & Maric, Nevena, 2006. "Existence and perfect simulation of one-dimensional loss networks," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1920-1931, December.
    7. Bermolen, Paola & Jonckheere, Matthieu & Moyal, Pascal, 2017. "The jamming constant of uniform random graphs," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2138-2178.
    8. Lasse Leskelä & Falk Unger, 2012. "Stability of a spatial polling system with greedy myopic service," Annals of Operations Research, Springer, vol. 198(1), pages 165-183, September.
    9. Nancy L. Garcia & Nevena Marić, 2008. "Simulation Study for the Clan of Ancestors in a Perfect Simulation Scheme of a Continuous One-Dimensional Loss Network," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 453-469, September.
    10. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    11. Coeurjolly, Jean-François & Reynaud-Bouret, Patricia, 2019. "A concentration inequality for inhomogeneous Neyman–Scott point processes," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 30-34.
    12. Khadidja Henni & Pierre-Yves Louis & Brigitte Vannier & Ahmed Moussa, 2020. "Is-ClusterMPP: clustering algorithm through point processes and influence space towards high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 543-570, September.
    13. Diego Giuliani & Giuseppe Arbia & Giuseppe Espa, 2014. "Weighting Ripley’s K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration," International Regional Science Review, , vol. 37(3), pages 251-272, July.
    14. Ahmed Ait Ameur & Hichem Elmossaoui & Nadia Oukid, 2024. "New Computer Experiment Designs with Area-Interaction Point Processes," Mathematics, MDPI, vol. 12(15), pages 1-17, July.
    15. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    16. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    17. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    18. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    19. Robert, Philippe, 2010. "The evolution of a spatial stochastic network," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1342-1363, July.
    20. Glenna F Nightingale & Kevin N Laland & William Hoppitt & Peter Nightingale, 2015. "Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:23-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.