IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1372-1390.html
   My bibliography  Save this article

Bayesian Inference in the Presence of Intractable Normalizing Functions

Author

Listed:
  • Jaewoo Park
  • Murali Haran

Abstract

Models with intractable normalizing functions arise frequently in statistics. Common examples of such models include exponential random graph models for social networks and Markov point processes for ecology and disease modeling. Inference for these models is complicated because the normalizing functions of their probability distributions include the parameters of interest. In Bayesian analysis, they result in so-called doubly intractable posterior distributions which pose significant computational challenges. Several Monte Carlo methods have emerged in recent years to address Bayesian inference for such models. We provide a framework for understanding the algorithms, and elucidate connections among them. Through multiple simulated and real data examples, we compare and contrast the computational and statistical efficiency of these algorithms and discuss their theoretical bases. Our study provides practical recommendations for practitioners along with directions for future research for Markov chain Monte Carlo (MCMC) methodologists. Supplementary materials for this article are available online.

Suggested Citation

  • Jaewoo Park & Murali Haran, 2018. "Bayesian Inference in the Presence of Intractable Normalizing Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1372-1390, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1372-1390
    DOI: 10.1080/01621459.2018.1448824
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1448824
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1448824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takuo Matsubara & Jeremias Knoblauch & François‐Xavier Briol & Chris J. Oates, 2022. "Robust generalised Bayesian inference for intractable likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 997-1022, July.
    2. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    3. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    4. Medina-Aguayo, Felipe & Rudolf, Daniel & Schweizer, Nikolaus, 2020. "Perturbation bounds for Monte Carlo within Metropolis via restricted approximations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2200-2227.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1372-1390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.