Two‐sample inference for high‐dimensional Markov networks
Author
Abstract
Suggested Citation
DOI: 10.1111/rssb.12446
Download full text from publisher
References listed on IDEAS
- T T Cai & H Li & J Ma & Y Xia, 2019. "Differential Markov random field analysis with an application to detecting differential microbial community networks," Biometrika, Biometrika Trust, vol. 106(2), pages 401-416.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011.
"Inference on Treatment Effects After Selection Amongst High-Dimensional Controls,"
Papers
1201.0224, arXiv.org, revised May 2012.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers 26/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2012. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers 10/12, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2012. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers CWP10/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers CWP26/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Masashi Sugiyama & Taiji Suzuki & Shinichi Nakajima & Hisashi Kashima & Paul Bünau & Motoaki Kawanabe, 2008. "Direct importance estimation for covariate shift adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 699-746, December.
- Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Yin Xia & Tianxi Cai & T. Tony Cai, 2015. "Testing differential networks with applications to the detection of gene-gene interactions," Biometrika, Biometrika Trust, vol. 102(2), pages 247-266.
- Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
- Sihai Dave Zhao & T. Tony Cai & Hongzhe Li, 2014. "Direct estimation of differential networks," Biometrika, Biometrika Trust, vol. 101(2), pages 253-268.
- Jana Janková & Sara Geer, 2017. "Honest confidence regions and optimality in high-dimensional precision matrix estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 143-162, March.
- Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
- Nicolai Meinshausen, 2015. "Group bound: confidence intervals for groups of variables in sparse high dimensional regression without assumptions on the design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 923-945, November.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"," Papers 1305.6099, arXiv.org, revised Jun 2013.
- Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018.
"LASSO-driven inference in time and space,"
CeMMAP working papers
CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Aaron Hudson & Ali Shojaie, 2022. "Covariate-Adjusted Inference for Differential Analysis of High-Dimensional Networks," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 345-388, June.
- Pircalabelu, Eugen, 2022. "WB-graphs: a within versus between group similarity interplay," LIDAM Discussion Papers ISBA 2022007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
- Martin C. Arnold & Thilo Reinschlussel, 2024. "Bootstrap Adaptive Lasso Solution Path Unit Root Tests," Papers 2409.07859, arXiv.org.
- Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
- Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- S Klaassen & J Kueck & M Spindler & V Chernozhukov, 2023.
"Uniform inference in high-dimensional Gaussian graphical models,"
Biometrika, Biometrika Trust, vol. 110(1), pages 51-68.
- Sven Klaassen & Jannis Kuck & Martin Spindler & Victor Chernozhukov, 2018. "Uniform Inference in High-Dimensional Gaussian Graphical Models," Papers 1808.10532, arXiv.org, revised Dec 2018.
- Sven Klaassen & Jannis Kück & Martin Spindler & Victor Chernozhukov, 2019. "Uniform inference in high-dimensional Gaussian graphical models," CeMMAP working papers CWP29/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
- Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
- Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
- Yin Xia & Lexin Li, 2017. "Hypothesis testing of matrix graph model with application to brain connectivity analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 780-791, September.
- Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
- Nezakati, Ensiyeh & Pircalabelu, Eugen, 2021. "Unbalanced distributed estimation and inference for precision matrices," LIDAM Discussion Papers ISBA 2021031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:5:p:939-962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.