IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i4p755-770..html
   My bibliography  Save this article

Differential network analysis via lasso penalized D-trace loss

Author

Listed:
  • Huili Yuan
  • Ruibin Xi
  • Chong Chen
  • Minghua Deng

Abstract

SummaryBiological networks often change under different environmental and genetic conditions. In this paper, we model network change as the difference of two precision matrices and propose a novel loss function called the D-trace loss, which allows us to directly estimate the precision matrix difference without attempting to estimate the precision matrices themselves. Under a new irrepresentability condition, we show that the D-trace loss function with the lasso penalty can yield consistent estimators in high-dimensional settings if the difference network is sparse. A very efficient algorithm is developed based on the alternating direction method of multipliers to minimize the penalized loss function. Simulation studies and a real-data analysis show that the proposed method outperforms other methods.

Suggested Citation

  • Huili Yuan & Ruibin Xi & Chong Chen & Minghua Deng, 2017. "Differential network analysis via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 104(4), pages 755-770.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:755-770.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx049
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    2. Ghazinoory, Sepehr & Aghaei, Parvaneh, 2021. "Differences between policy assessment & policy evaluation; a case study on supportive policies for knowledge-based firms," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Jarod Smith & Mohammad Arashi & Andriƫtte Bekker, 2022. "Empowering differential networks using Bayesian analysis," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:755-770.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.