IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p686-699.html
   My bibliography  Save this article

A Generic Path Algorithm for Regularized Statistical Estimation

Author

Listed:
  • Hua Zhou
  • Yichao Wu

Abstract

Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution toward prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized ℓ 1 penalized regression methods. In this article we follow a recent idea by Wu and propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized ℓ 1 penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. Nonasymptotic error bounds for the equality regularized estimates are derived. In practice, the EPSODE can be coupled with AIC, BIC, C p or cross-validation to select an optimal tuning parameter, or provide a convenient model space for performing model averaging or aggregation. Our applications to generalized ℓ 1 regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm. Supplementary materials for this article are available online.

Suggested Citation

  • Hua Zhou & Yichao Wu, 2014. "A Generic Path Algorithm for Regularized Statistical Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 686-699, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:686-699
    DOI: 10.1080/01621459.2013.864166
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.864166
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.864166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Hua Zhou & Kenneth Lange, 2015. "Path following in the exact penalty method of convex programming," Computational Optimization and Applications, Springer, vol. 61(3), pages 609-634, July.
    3. Jeon, Jong-June & Kim, Yongdai & Won, Sungho & Choi, Hosik, 2020. "Primal path algorithm for compositional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:686-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.