IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i1p19-35.html
   My bibliography  Save this article

Model selection and estimation in the Gaussian graphical model

Author

Listed:
  • Ming Yuan
  • Yi Lin

Abstract

We propose penalized likelihood methods for estimating the concentration matrix in the Gaussian graphical model. The methods lead to a sparse and shrinkage estimator of the concentration matrix that is positive definite, and thus conduct model selection and estimation simultaneously. The implementation of the methods is nontrivial because of the positive definite constraint on the concentration matrix, but we show that the computation can be done effectively by taking advantage of the efficient maxdet algorithm developed in convex optimization. We propose a BIC -type criterion for the selection of the tuning parameter in the penalized likelihood methods. The connection between our methods and existing methods is illustrated. Simulations and real examples demonstrate the competitive performance of the new methods. Copyright 2007, Oxford University Press.

Suggested Citation

  • Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:19-35
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:1:p:19-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.