IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v109y2001i3d10.1023_a1017501703105.html
   My bibliography  Save this article

Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization

Author

Listed:
  • P. Tseng

    (University of Washington)

Abstract

We study the convergence properties of a (block) coordinate descent method applied to minimize a nondifferentiable (nonconvex) function f(x 1, . . . , x N ) with certain separability and regularity properties. Assuming that f is continuous on a compact level set, the subsequence convergence of the iterates to a stationary point is shown when either f is pseudoconvex in every pair of coordinate blocks from among N-1 coordinate blocks or f has at most one minimum in each of N-2 coordinate blocks. If f is quasiconvex and hemivariate in every coordinate block, then the assumptions of continuity of f and compactness of the level set may be relaxed further. These results are applied to derive new (and old) convergence results for the proximal minimization algorithm, an algorithm of Arimoto and Blahut, and an algorithm of Han. They are applied also to a problem of blind source separation.

Suggested Citation

  • P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
  • Handle: RePEc:spr:joptap:v:109:y:2001:i:3:d:10.1023_a:1017501703105
    DOI: 10.1023/A:1017501703105
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017501703105
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017501703105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:109:y:2001:i:3:d:10.1023_a:1017501703105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.