IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i4p1883-1895.html
   My bibliography  Save this article

Bifurcation and chaos in a ratio-dependent predator–prey system with time delay

Author

Listed:
  • Gan, Qintao
  • Xu, Rui
  • Yang, Pinghua

Abstract

In this paper, a ratio-dependent predator–prey model with time delay is investigated. We first consider the local stability of a positive equilibrium and the existence of Hopf bifurcations. By using the normal form theory and center manifold reduction, we derive explicit formulae which determine the stability, direction and other properties of bifurcating periodic solutions. Finally, we consider the effect of impulses on the dynamics of the above time-delayed population model. Numerical simulations show that the system with constant periodic impulsive perturbations admits rich complex dynamic, such as periodic doubling cascade and chaos.

Suggested Citation

  • Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1883-1895
    DOI: 10.1016/j.chaos.2007.06.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chengjun & Cao, Zhijie & Lin, Yiping, 2007. "Analysis of stability and Hopf bifurcation for a viral infectious model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 234-245.
    2. Sun, Chengjun & Han, Maoan & Lin, Yiping, 2007. "Analysis of stability and Hopf bifurcation for a delayed logistic equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 672-682.
    3. Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
    4. Sun, Chengjun & Lin, Yiping & Han, Maoan, 2006. "Stability and Hopf bifurcation for an epidemic disease model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 204-216.
    5. Wang, Fengyan & Zhang, Shuwen & Chen, Lansun & Sun, Lihua, 2006. "Bifurcation and complexity of Monod type predator–prey system in a pulsed chemostat," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 447-458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danyang & Liu, Hua & Zhang, Haotian & Wei, Yumei, 2023. "Influence of multiple delays mechanisms on predator–prey model with Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    3. Ling, Li & Wang, Weiming, 2009. "Dynamics of a Ivlev-type predator–prey system with constant rate harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2139-2153.
    4. Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
    5. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
    2. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    3. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    4. Wang, Weiming & Wang, Xiaoqin & Lin, Yezhi, 2008. "Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1427-1441.
    5. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2009. "Extinction and permanence in delayed stage-structure predator–prey system with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2216-2224.
    6. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    7. Wang, Xiaoqin & Wang, Weiming & Lin, Yezhi & Lin, Xiaolin, 2009. "The dynamical complexity of an impulsive Watt-type prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 731-744.
    8. Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
    9. Wang, Fengyan & Pang, Guoping & Lu, Zhengyi, 2009. "Analysis of a Beddington–DeAngelis food chain chemostat with periodically varying dilution rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1609-1615.
    10. Li, Xue-Zhi & Li, Wen-Sheng & Ghosh, Mini, 2009. "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2822-2832.
    11. Din, Anwarud, 2024. "Bifurcation analysis of a delayed stochastic HBV epidemic model: Cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    13. Wang, Fengyan & Pang, Guoping, 2008. "Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1366-1376.
    14. Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
    15. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    16. Zhang, Xue & Zhang, Qing-ling & Zhang, Yue, 2009. "Bifurcations of a class of singular biological economic models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1309-1318.
    17. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    18. Liu, Junli & Zhang, Tailei, 2009. "Bifurcation analysis of an SIS epidemic model with nonlinear birth rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1091-1099.
    19. Hu, Guang-Ping & Li, Xiao-Ling, 2012. "Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 229-237.
    20. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2008. "Analysis of a Monod–Haldene type food chain chemostat with periodically varying substrate," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 731-742.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1883-1895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.