IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v87y2016icp109-124.html
   My bibliography  Save this article

Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis

Author

Listed:
  • Pal, D.
  • Mahapatra, G.S.

Abstract

We have studied the combined effect of toxicant and fluctuation of the biological parameters on the dynamical behaviors of a delayed two-species competitive system with imprecise biological parameters. Due to the global increase of harmful phytoplankton blooms, the study of dynamic interactions between two competing phytoplankton species in the presence of toxic substances is an active field of research now days. The ordinary mathematical formulation of models for two competing phytoplankton species, when one or both the species liberate toxic substances, is unable to capture the oscillatory and highly variable growth of phytoplankton populations. The deterministic model never predicts the sudden localized behavior of certain species. These obstacles of mathematical modeling can be overcomed if we include interval variability of biological parameters in our modeling approach. In this investigation, we construct imprecise models of allelopathic interactions between two competing phytoplankton species as a parametric differential equation model. We incorporate the effect of toxicant on the species in two different cases known as toxic inhibition and toxic stimulatory system. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. In case of toxic stimulatory system, the delay model exhibits a stable limit cycle oscillation. Analytical findings are supported through exhaustive numerical simulations.

Suggested Citation

  • Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
  • Handle: RePEc:eee:chsofr:v:87:y:2016:i:c:p:109-124
    DOI: 10.1016/j.chaos.2016.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Silva Peixoto, Magda & de Barros, Laécio Carvalho & Bassanezi, Rodney Carlos, 2008. "Predator–prey fuzzy model," Ecological Modelling, Elsevier, vol. 214(1), pages 39-44.
    2. Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
    3. G. S. Mahapatra & T. K. Mandal, 2012. "Posynomial Parametric Geometric Programming with Interval Valued Coefficient," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 120-132, July.
    4. Győri, István & Hartung, Ferenc & Mohamady, Nahed A., 2015. "On a nonlinear delay population model," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 909-925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pal, D. & Samanta, G.P. & Mahapatra, G.S., 2017. "Selective harvesting of two competing fish species in the presence of toxicity with time delay," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 74-93.
    2. Ye, Luhong & Zhao, Hongyong & Wu, Daiyong, 2023. "Spatial movement with memory-induced cross-diffusion effect and toxin effect in predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 68-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    2. Sarif, Nawaj & Kumar, Arjun & Anshu, & Sarwardi, Sahabuddin & Dubey, Balram, 2024. "Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Colomer, M. Àngels & Margalida, Antoni & Sanuy, Delfí & Pérez-Jiménez, Mario J., 2011. "A bio-inspired computing model as a new tool for modeling ecosystems: The avian scavengers as a case study," Ecological Modelling, Elsevier, vol. 222(1), pages 33-47.
    4. Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
    5. Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
    6. Cai, Liming & Li, Xuezhi & Yu, Jingyuan & Zhu, Guangtian, 2009. "Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2064-2075.
    7. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    8. Gudivada Durga Bhavani & Ieva Meidute-Kavaliauskiene & Ghanshaym S. Mahapatra & Renata Činčikaitė, 2022. "Pythagorean Fuzzy Storage Capacity with Controllable Carbon Emission Incorporating Green Technology Investment on a Two-Depository System," Energies, MDPI, vol. 15(23), pages 1-34, November.
    9. Jian Wu, 2019. "Analysis of a Three-Species Stochastic Delay Predator-Prey System with Imprecise Parameters," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 43-67, March.
    10. Huang, Chuangxia & Yang, Xiaoguang & Cao, Jinde, 2020. "Stability analysis of Nicholson’s blowflies equation with two different delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 201-206.
    11. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    12. Renu, & Upadhyay, Ranjit Kumar & Tiwari, S.P. & Yadav, R.P., 2023. "Analysis of interval-valued model for interaction between plankton-fish population in marine ecosystem," Ecological Modelling, Elsevier, vol. 484(C).
    13. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    14. Berezansky, Leonid & Braverman, Elena, 2016. "Boundedness and persistence of delay differential equations with mixed nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 154-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:87:y:2016:i:c:p:109-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.